Skip to main content
Log in

New narrow band gap of silicon-based perovskite FASiI3 for photovoltaic applications: first principle investigations of the structural, electronic and optical properties

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Lead-free perovskites are among compounds that are currently most investigated for their potential application in photovoltaic due to their non-toxic effect on the environment. In this paper, we are studying the hybrid organic–inorganic lead-free perovskite FASiI3. The material has been examined using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). These approaches are implemented in the Quantum Espresso code. In fact, we report the structural and electronic properties of this silicon-based perovskite employing GGA-PBE, GGA-PBESol and LDA approximations. The band structure, the total and partial density of states (DOS and PDOS) of FASiI3 has been presented and discussed, it is demonstrated that this perovskite behaves as a semiconductor with direct bandgap. In addition, we have inspected the spin–orbit coupling impact on the bandgap energy, it is demonstrated that the energy gap reduced with SOC, In fact, we discovered bandgap of 1.33 eV applying the GGA-PBESol approach without SOC. The bandgap energy is found to drop to achieve the value 1.10 eV when the SOC correction is added. Moreover, the optical properties were determined and presented. Our results can pave the way to design new efficient and eco-friendly lead-free perovskite solar material for photovoltaic application.

Graphical abstract

Silicon-based perovskite FASiI3 for photovoltaic application

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  2. Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html (accessed November 10, 2021).

  3. N. Zhang, Y. Li, Y. Zhou, E. Liu, H. Wang, B. Xue, Tuning the photoelectric properties of perovskite materials using Mg/Ge/Si and Br double-doped to FASnI3. J. Phys. Chem. C 127, 2215–2222 (2023). https://doi.org/10.1021/acs.jpcc.2c08278

    Article  CAS  Google Scholar 

  4. Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Single crystal formamidinium lead iodide (FAPbI 3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016). https://doi.org/10.1002/adma.201505002

    Article  CAS  PubMed  Google Scholar 

  5. T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014). https://doi.org/10.1021/jp411112k

    Article  CAS  Google Scholar 

  6. F. Cordero, F. Craciun, F. Trequattrini, A. Generosi, B. Paci, A.M. Paoletti, G. Pennesi, Stability of cubic FAPbI 3 from X-ray diffraction, an elastic, and dielectric measurements. J. Phys. Chem. Lett. 10, 2463–2469 (2019). https://doi.org/10.1021/acs.jpclett.9b00896

    Article  CAS  PubMed  Google Scholar 

  7. W.-J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014). https://doi.org/10.1002/adma.201306281

    Article  CAS  PubMed  Google Scholar 

  8. H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress, F.T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C.E. Avalos, B.I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Grätzel, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells, Science 370 (2020) eabb8985. https://doi.org/10.1126/science.abb8985.

  9. A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O.M. Bakr, Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1, 32–37 (2016). https://doi.org/10.1021/acsenergylett.6b00002

    Article  CAS  Google Scholar 

  10. P. Kanhere, S. Chakraborty, C.J. Rupp, R. Ahuja, Z. Chen, Substitution induced band structure shape tuning in hybrid perovskites (CH3NH3Pb1−xSnxI3) for efficient solar cell applications. RSC Adv. 5, 107497–107502 (2015). https://doi.org/10.1039/C5RA19778C

    Article  ADS  CAS  Google Scholar 

  11. S. Lv, S. Pang, Y. Zhou, N.P. Padture, H. Hu, L. Wang, X. Zhou, H. Zhu, L. Zhang, C. Huang, G. Cui, One-step, solution-processed formamidinium lead trihalide (FAPbI(3–x)Clx) for mesoscopic perovskite–polymer solar cells. Phys. Chem. Chem. Phys. 16, 19206–19211 (2014). https://doi.org/10.1039/C4CP02113D

    Article  CAS  PubMed  Google Scholar 

  12. M. Roknuzzaman, J.A. Alarco, H. Wang, A. Du, T. Tesfamichael, K. (Ken) Ostrikov, Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics, Computational Materials Science 169 (2019) 109118. https://doi.org/10.1016/j.commatsci.2019.109118.

  13. X.-F. Diao, Y.-L. Tang, Q. Xie, First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite, 28 (2019) 9

  14. Y. El Arfaoui, M. Khenfouch, N. Habiballah, DFT and SCAPS-1D calculations of FASnI3-based perovskite solar cell using ZnO as an electron transport layer. Eur. Phys. J. Appl. Phys. (2023). https://doi.org/10.1051/epjap/2023230099

    Article  Google Scholar 

  15. Y. El Arfaoui, M. Khenfouch, N. Habiballah, A DFT and time-dependent DFT investigation of the structural, electronic and optical properties of lead-free famgi3 perovskite for photovoltaic applications. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10801-3

    Article  Google Scholar 

  16. Y.E. Arfaoui, M. Khenfouch, N. Habiballah, Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation, Results in Optics (2023) 100554. https://doi.org/10.1016/j.rio.2023.100554.

  17. Y. El Arfaoui, M. Khenfouch, N. Habiballah, Optimization of all Pb-free perovskite CsGeI3/FASnI3 tandem solar device with 30.42% efficiency: Numerical simulation using SCAPS, Optik (2024) 171638. https://doi.org/10.1016/j.ijleo.2024.171638.

  18. Y. el Arfaoui, M. Khenfouch, N. Habiballah, HTL-free non-toxic perovskite tandem solar device MAGeI3/FASnI3 with 25.69% efficiency: design and simulation using SCAPS, 2023. https://doi.org/10.21203/rs.3.rs-3300856/v1.

  19. Y. el Arfaoui, M. Khenfouch, N. Habiballah, Bandgaps engineering of the lead-free perovskites FABI3 (B= Sn, Ge or Pb) materials for all Pb-free Tandem Solar Cells: first principle investigation of structural and electronic properties, 2023. https://doi.org/10.21203/rs.3.rs-3464581/v1.

  20. S. Monika, S. Pachori, A.S. Kumari, Verma, An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 31, 18004–18017 (2020). https://doi.org/10.1007/s10854-020-04352-0

    Article  CAS  Google Scholar 

  21. R. Mayengbam, Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies_ An ab-initio investigation, Materials Today Communications (2020) 12.

  22. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.

  23. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  ADS  CAS  Google Scholar 

  24. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  CAS  PubMed  Google Scholar 

  25. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  ADS  CAS  Google Scholar 

  26. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  CAS  Google Scholar 

  27. D.R. Hamann, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979). https://doi.org/10.1103/PhysRevLett.43.1494

    Article  ADS  CAS  Google Scholar 

  28. A.D. Corso, A.M. Conte, Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B 71, 115106 (2005). https://doi.org/10.1103/PhysRevB.71.115106

    Article  ADS  CAS  Google Scholar 

  29. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  30. T.H. Fischer, J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992). https://doi.org/10.1021/j100203a036

    Article  CAS  Google Scholar 

  31. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  32. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl. 55, 3447–3450 (2016). https://doi.org/10.1002/anie.201511792

    Article  CAS  PubMed  Google Scholar 

  33. E.C. Schueller, G. Laurita, D.H. Fabini, C.C. Stoumpos, M.G. Kanatzidis, R. Seshadri, Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57, 695–701 (2018). https://doi.org/10.1021/acs.inorgchem.7b02576

    Article  CAS  PubMed  Google Scholar 

  34. F. Valadares, I. Guilhon, L.K. Teles, M. Marques, Electronic structure panorama of halide perovskites: approximated dft-1/2 quasiparticle and relativistic corrections. J. Phys. Chem. C 124, 18390–18400 (2020). https://doi.org/10.1021/acs.jpcc.0c03672

    Article  CAS  Google Scholar 

  35. R. Mayengbam, S.K. Tripathy, G. Palai, Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies: An ab-initio investigation. Materials Today Communications 24, 101216 (2020). https://doi.org/10.1016/j.mtcomm.2020.101216

    Article  CAS  Google Scholar 

  36. S. Monika, R. Pachori, B.L. Agrawal, A.S. Choudhary, Verma, An efficient and stable lead-free organic–inorganic tin iodide perovskite for photovoltaic device: Progress and challenges. Energy Rep. 8, 5753–5763 (2022). https://doi.org/10.1016/j.egyr.2022.03.183

    Article  Google Scholar 

  37. I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008). https://doi.org/10.1103/PhysRevB.77.235214

    Article  ADS  CAS  Google Scholar 

  38. T. Wu, X. Chen, J. Wang, Metal-free hybrid organic-inorganic perovskites for photovoltaics. J. Phys. Chem. Lett. 11, 5938–5947 (2020). https://doi.org/10.1021/acs.jpclett.0c01645

    Article  CAS  PubMed  Google Scholar 

  39. Y.S. Handayani, E.D. Indari, R. Hidayat, Y. Othsubo, S. Kimura, Understanding the role of organic cations on the electronic structure of lead iodide perovskite from their UV photoemission spectra and their electronic structures calculated by DFT method. Mater. Res. Express 6, 084009 (2019). https://doi.org/10.1088/2053-1591/ab1d3f

    Article  ADS  CAS  Google Scholar 

  40. U.-G. Jong, C.-J. Yu, Y.-S. Kim, Y.-H. Kye, C.-H. Kim, First-principles study on the electronic and optical properties of inorganic perovskite Rb1-xCsxPbI3 for solar cell applications. Phys. Rev. B 98, 125116 (2018). https://doi.org/10.1103/PhysRevB.98.125116

    Article  ADS  CAS  Google Scholar 

  41. F.F. Targhi, Y.S. Jalili, F. Kanjouri, MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results in Physics 10, 616–627 (2018). https://doi.org/10.1016/j.rinp.2018.07.007

    Article  ADS  Google Scholar 

  42. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  CAS  Google Scholar 

  43. V. Mkpenie, O. Abakedi, Silicon Halide Perovskite for Efficient Sunlight Harvesting in Solar Cells: Insights From First-Principles, 10 (2018) 78–85

  44. S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021). https://doi.org/10.1016/j.cplett.2021.138347

    Article  CAS  Google Scholar 

  45. D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Kramers-Krönig relations in nonlinear optics. Opt. Quant. Electron. 24, 1–30 (1992). https://doi.org/10.1007/BF01234275

    Article  CAS  Google Scholar 

  46. F. Iannone, F. Ambrosino, G. Bracco, M. De Rosa, A. Funel, G. Guarnieri, S. Migliori, F. Palombi, G. Ponti, G. Santomauro, P. Procacci, CRESCO ENEA HPC clusters: a working example of a multifabric GPFS Spectrum Scale layout, in: 2019 International Conference on High Performance Computing & Simulation (HPCS), IEEE, Dublin, Ireland, 2019: pp. 1051–1052. https://doi.org/10.1109/HPCS48598.2019.9188135.

  47. A. Mariano, G. D’Amato, F. Ambrosino, G. Aprea, F. Buonocore, M. Celino, A. Colavincenzo, M. Fina, A. Funel, S. Giusepponi, G. Guarnieri, F. Palombi, S. Pierattini, G. Ponti, G. Santomauro, G. Bracco, S. Migliori, Fast Access to Remote Objects 2.0 a renewed gateway to ENEAGRID distributed computing resources, Future Generation Computer Systems 94 (2019) 920–928. https://doi.org/10.1016/j.future.2017.11.032.

Download references

Acknowledgements

The computing resources and the related technical support used for this work have been provided by CRESCO/ENEAGRID, the Italian National Agency for New Technologies [47]. Most of the calculations have been carried on CRESCO/ENEAGRID, High Performance Computing infrastructure, and are part of the VIPERLAB project: FULLY CONNECTED VIRTUAL AND PHYSICAL PEROVSKITE PHOTOVOLTAICS LAB (proposal_VLAB-221-00041). We acknowledge the support of Dr. Simone Giusepponi and the ENEA-GRID team [48].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Youssef El Arfaoui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Arfaoui, Y., Khenfouch, M. & Habiballah, N. New narrow band gap of silicon-based perovskite FASiI3 for photovoltaic applications: first principle investigations of the structural, electronic and optical properties. Eur. Phys. J. B 97, 19 (2024). https://doi.org/10.1140/epjb/s10051-024-00655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00655-x

Navigation