Skip to main content
Log in

Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Low-dose computed tomography (LDCT) technology has attracted more and more attention in the field of medical imaging because of the reduction of radiation damage to the human body. However, the large amount of quantum noise contained in LDCT images can affect physicians’ judgment. To solve the problem of large amounts of quantum noise and artifacts in LDCT images, a convolutional neural network denoising model based on cartoon texture decomposition of images (CATCNN) is developed in this study based on deep learning. The model first uses a U-Net-based image decomposition sub-network to decompose LDCT images into cartoon images and texture images. The texture images are then denoised using a texture denoising sub-network based on edge protection and Efficient Channel Attention, finally, cartoon images are summed with the denoised texture images to obtain images with improved quality. Our experimental results demonstrate that the proposed model outperforms existing technologies, achieving a peak signal-to-noise ratio value of 33.4666 dB and a structural similarity value of 0.9193. The visual and quantitative evaluation results suggest that the CATCNN model effectively improves the quality of LDCT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the AAPM Dataset, http://www.aapm.org/GrandChallenge/LowDoseCT/.

References

  1. AAPM, Low Dose CT Grand Challenge (2016). https://www.aapm.org/GrandChallenge/LowDoseCT/

  2. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006). https://doi.org/10.1109/tsp.2006.881199

    Article  Google Scholar 

  3. A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (IEEE, 2005), pp. 60–65

  4. H. Chen, Y. Zhang, M.K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36, 2524–2535 (2017). https://doi.org/10.1109/tmi.2017.2715284

    Article  Google Scholar 

  5. Q. Chen, J. Xu, V. Koltun, Fast image processing with fully-convolutional networks, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2497–2506

  6. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007). https://doi.org/10.1109/tip.2007.901238

    Article  MathSciNet  Google Scholar 

  7. M. Diwakar, P. Singh, G.R. Karetla, P. Narooka, A. Yadav, R.K. Maurya, R. Gupta, J.L. Arias-Gonzáles, M.P. Singh, D.K. Shetty, Low-dose COVID-19 CT image denoising using batch normalization and convolution neural network. Electronics 11, 3375 (2022). https://doi.org/10.3390/electronics11203375

    Article  Google Scholar 

  8. Q. Fan, J. Yang, G. Hua, B. Chen, D. Wipf, A generic deep architecture for single image reflection removal and image smoothing, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 3238–3247

  9. M. Geng, X. Meng, J. Yu, L. Zhu, L. Jin, Z. Jiang, B. Qiu, H. Li, H. Kong, J. Yuan, Content-noise complementary learning for medical image denoising. IEEE Trans. Med. Imaging 41, 407–419 (2021). https://doi.org/10.1109/tmi.2021.3113365

    Article  Google Scholar 

  10. B. Gupta, A.K. Singh, A new cartoon–texture image decomposition approach with smoothing spline interpolation. Optik 159, 39–49 (2018). https://doi.org/10.1016/j.ijleo.2018.01.030

    Article  Google Scholar 

  11. W.-L. Hsu, D.L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 179, 361–382 (2013). https://doi.org/10.1667/rr2892.1

    Article  Google Scholar 

  12. J.M. Joyce, Kullback-leibler divergence, in International Encyclopedia of Statistical Science (Springer, 2011), pp. 720–722

  13. E. Kang, J.C. Ye, Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstruction. arXiv preprint arXiv (2017). https://doi.org/10.48550/arXiv.1703.01383

  14. T. Liang, Y. Jin, Y. Li, T. Wang, Edcnn: edge enhancement-based densely connected network with compound loss for low-dose CT denoising, in 2020 15th IEEE International Conference on Signal Processing (ICSP) (IEEE, 2020), pp. 193–198.

  15. Y. Liu, J. Kang, Z. Li, Q. Zhang, Z. Gui, Technology, low-dose CT noise reduction based on local total variation and improved wavelet residual CNN. J. X-Ray Sci. Technol. (2022). https://doi.org/10.3233/xst-221233

    Article  Google Scholar 

  16. K. Lu, S. You, N. Barnes, Deep texture and structure aware filtering network for image smoothing, in Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 217–233

  17. C.H. McCollough, A.C. Bartley, R.E. Carter, B. Chen, T.A. Drees, P. Edwards, D.R. Holmes III., A.E. Huang, F. Khan, S. Leng, Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44, e339–e352 (2017). https://doi.org/10.1002/mp.12345

    Article  Google Scholar 

  18. A.M. Mendrik, E.-J. Vonken, A. Rutten, M.A. Viergever, B. van Ginneken, Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with continuous switch. IEEE Trans. Med. Imaging 28, 1585–1594 (2009). https://doi.org/10.1109/tmi.2009.2022368

    Article  Google Scholar 

  19. M. Menéndez, J. Pardo, L. Pardo, M.C. Pardo, The Jensen–Shannon divergence. J. Frankl. Inst. 334, 307–318 (1997). https://doi.org/10.1016/s0016-0032(96)00063-4

    Article  MathSciNet  Google Scholar 

  20. H. Shan, Y. Zhang, Q. Yang, U. Kruger, M.K. Kalra, L. Sun, W. Cong, G. Wang, 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 37, 1522–1534 (2018). https://doi.org/10.1109/tmi.2018.2832217

    Article  Google Scholar 

  21. H.R. Sheikh, A.C. Bovik, Image information and visual quality. IEEE Trans. Image Process. 15, 430–444 (2006). https://doi.org/10.1109/tip.2005.859378

    Article  Google Scholar 

  22. P. Singh, M. Diwakar, R. Gupta, S. Kumar, A. Chakraborty, E. Bajal, M. Jindal, D.K. Shetty, J. Sharma, H. Dayal, A method noise-based Convolutional neural network technique for CT image denoising. Electronics 11, 3535 (2022). https://doi.org/10.3390/electronics11213535

    Article  Google Scholar 

  23. K. Usui, K. Ogawa, M. Goto, Y. Sakano, S. Kyougoku, H. Daida, Biomedicine, art, quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography. Biomedicine 4, 1–9 (2021). https://doi.org/10.1186/s42492-021-00087-9

    Article  Google Scholar 

  24. D. Wang, F. Fan, Z. Wu, R. Liu, F. Wang, H. Yu, CTformer: convolution-free Token2Token dilated vision transformer for low-dose CT denoising. Phys. Med. Biol. 68, 065012 (2023). https://doi.org/10.1088/1361-6560/acc000

    Article  Google Scholar 

  25. Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11534–11542

  26. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  27. K.K. Wong, J.S. Cummock, Y. He, R. Ghosh, J.J. Volpi, S.T. Wong, Graphics, retrospective study of deep learning to reduce noise in non-contrast head CT images. Comput. Med. Imaging Graph. 94, 101996 (2021). https://doi.org/10.1016/j.compmedimag.2021.101996

    Article  Google Scholar 

  28. J. Xu, Y. Hao, X. Zhang, J. Zhang, A cartoon+ texture image decomposition variational model based on preserving the local geometric characteristics. IEEE Access 8, 46574–46584 (2020). https://doi.org/10.1109/access.2020.2978011

    Article  Google Scholar 

  29. L. Xu, J. Ren, Q. Yan, R. Liao, J. Jia, Deep edge-aware filters, in International Conference on Machine Learning (PMLR, 2015), pp. 1669–1678

  30. W. Xue, L. Zhang, X. Mou, A.C. Bovik, Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23, 684–695 (2013). https://doi.org/10.1109/tip.2013.2293423

    Article  MathSciNet  Google Scholar 

  31. H. Yang, Y. Park, J. Yoon, B. Jeong, An improved weighted nuclear norm minimization method for image denoising. IEEE Access 7, 97919–97927 (2019). https://doi.org/10.1109/access.2019.2929541

    Article  Google Scholar 

  32. Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M.K. Kalra, Y. Zhang, L. Sun, G. Wang, Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37, 1348–1357 (2018). https://doi.org/10.1109/tmi.2018.2827462

    Article  Google Scholar 

  33. S. Yao, W. Lin, E. Ong, Z. Lu, Contrast signal-to-noise ratio for image quality assessment, in IEEE International Conference on Image Processing 2005 (IEEE, 2005), pp. I-397

  34. X. Yi, P. Babyn, Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J. Digit. imaging 31, 655–669 (2018). https://doi.org/10.1007/s10278-018-0056-0

    Article  Google Scholar 

  35. F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv (2015). https://doi.org/10.48550/arXiv.1511.07122

  36. Y. Zeng, B. Zhang, W. Zhao, S. Xiao, G. Zhang, H. Ren, W. Zhao, Y. Peng, Y. Xiao, Y. Lu, Y. Zong, Magnetic resonance image denoising algorithm based on cartoon texture and residual parts. Comput. Math. Methods Med. (2020). https://doi.org/10.1155/2020/1405647

    Article  Google Scholar 

  37. K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017). https://doi.org/10.1109/tip.2017.2662206

    Article  MathSciNet  Google Scholar 

  38. L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011). https://doi.org/10.1109/tip.2011.2109730

    Article  MathSciNet  Google Scholar 

  39. F. Zhou, Q. Chen, B. Liu, G. Qiu, Structure and texture-aware image decomposition via training a neural network. IEEE Trans. Image Process. 29, 3458–3473 (2019). https://doi.org/10.1109/tip.2019.2961232

    Article  Google Scholar 

Download references

Funding

We would like to thank the editors and reviewers for their reviews that improved the content of this paper. This work was supported in part by the Basic Research Program of Shanxi Province under Grant 202203021211100 and 202103021224204, in part by the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province under Grant 2020L0282 (Corresponding author: Yi Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Gui.

Ethics declarations

Conflicts of interest

We declare that we do not have any commercial or associative interest that represents funding/conflicts of interests/ competing interests in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, Y., Zhang, P. et al. Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition. Circuits Syst Signal Process 43, 3073–3101 (2024). https://doi.org/10.1007/s00034-023-02594-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02594-x

Keywords

Navigation