Skip to main content
Log in

Magnetic Properties of CoNbyFe2-yO4 (0.00 ≤ y ≤ 0.08) Nanomaterials Synthesized via Modified Sol–gel Autocombustion Route

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present study reports the effect of niobium substitution on structural and magnetic properties of CoNbyFe2-yO4 (0.00 ≤ y ≤ 0.08) nanomaterials. XRD studies confirm the formation of pure cubic spinel phase with nanocrystalline nature of CoNbyFe2-yO4. The values of lattice parameters (a) decrease with Nb content (y) for CoNbyFe2-yO4, i.e. from a = 8.3656 Å to 8.3629 Å for y = 0.00 to y = 0.08, respectively. Crystallite sizes decrease with the increase of ‘y’ for CoNbyFe2-yO4, i.e. from 29 nm (y = 0.00) to 19 nm (y = 0.08). FTIR studies confirm the presence of two distinct IR bands in the range of 584 cm−1 – 590 cm−1 and 408 cm−1 – 410 cm−1 for stretching vibrations corresponding to the M–O bonds at tetrahedral and octahedral sites, respectively. FESEM micrographs illustrate the spherical morphology of CoNbyFe2-yO4. The values of saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were obtained from VSM measurements. The decrease in Ms was observed from 76.2 emu/g (y = 0.00) to 66.9 emu/g (y = 0.08) as a result of increase in ‘y’. The significant deviation in the Hc was observed from 1525 to 806 Oe for y = 0.00 to y = 0.08, respectively. All compositions of CoNbyFe2-yO4 show squareness ratio (Mr/Ms) values in the range of 0.4542–0.3214. The variation of magnetic parameters (Ms, Hc, Mr/Ms) for CoNbyFe2-yO4 nanomaterials are best explained on the basis of varying Nb atom substitution leading to cation distributions and possible surface spin disorder due to size and surface effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available upon request.

References

  1. Hezam, F.A., Rajeh, A., Nur, O., Mustafa, M.A.: Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B Condens. 596, 412389 (2020). https://doi.org/10.1016/j.physb.2020.412389

    Article  CAS  Google Scholar 

  2. Šukta, A., Gross, K.A.: Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016). https://doi.org/10.1016/j.snb.2015.08.027

    Article  CAS  Google Scholar 

  3. Narang, S.B., Pubby, K.: Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163

    Article  CAS  Google Scholar 

  4. Amiri, M., Salavati-Niasari, M., Akbari, A.: Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto-combustion method. Mater. Res. Bull. 46, 2204–2207 (2011). https://doi.org/10.1016/j.materresbull.2011.09.010

    Article  CAS  Google Scholar 

  6. Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., Wang, Z., Zhao, Y., Tian, Q., Wang, C.: Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Adv. Colloid Interface Sci. 294, 102486 (2021). https://doi.org/10.1016/j.cis.2021.102486

    Article  CAS  PubMed  Google Scholar 

  7. Akhlaghi, N., Najafpour-Darzi, G.: Manganese ferrite (MnFe2O4) nanoparticles: from synthesis to application – a review. J. Ind. Eng. Chem. 103, 292–304 (2021). https://doi.org/10.1016/j.jiec.2021.07.043

    Article  CAS  Google Scholar 

  8. Shin, H.C., Choi, S.C.: Mechanism of M Ferrites (M = Cu and Ni) in the CO2 Decomposition Reaction. Chem. Mater. 13, 1238–1242 (2001). https://doi.org/10.1021/cm000658b

    Article  CAS  Google Scholar 

  9. Hoque, S.M., Hossain, M.S., Choudhury, S., Akhter, S., Hyder, F.: Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. Mater. Lett. 162, 60–63 (2016). https://doi.org/10.1016/j.matlet.2015.09.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33, 1–8 (2013). https://doi.org/10.1016/j.msec.2012.09.003

    Article  CAS  Google Scholar 

  11. Prasad, P.D., Hemalatha, J.: Enhanced magnetic properties of highly crystalline cobalt ferrite fibers and their application as gas sensors. J. Magn. Magn. Mater. 484, 225–233 (2019). https://doi.org/10.1016/j.jmmm.2019.04.026

    Article  CAS  ADS  Google Scholar 

  12. Vinosha, P.A., Manikandan, A., Preetha, A.C., Dinesh, A., Slimani, Y., Almessiere, M.A., Baykal, A., Xavier, B., Nirmala, G.F.: Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J. Supercond. Nov. Magn. 34, 995–1018 (2021). https://doi.org/10.1007/s10948-021-05854-6

    Article  CAS  Google Scholar 

  13. Jauhar, S., Kaur, J., Goyal, A., Singhal, S.: Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6, 97694–97719 (2016). https://doi.org/10.1039/C6RA21224G

    Article  CAS  ADS  Google Scholar 

  14. Ajroudi, L., Mliki, N., Bessais, L., Madigou, V., Villain, S., Leroux, C.: Magnetic, electric and thermal properties of cobalt ferrite nanoparticles. Mater. Res. Bull. 59, 49–58 (2014). https://doi.org/10.1016/j.materresbull.2014.06.029

    Article  CAS  Google Scholar 

  15. Jnaneshwara, D.M., Avadhani, D.N., Prasad, B.D., Nagabhushana, B.M., Nagabhushana, H., Sharma, S.C., Shivakumara, C., Rao, J.L., Gopal, N.O., Ke, S.C., Chakradhar, R.P.S.: Electron paramagnetic resonance, magnetic and electric properties of CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 339, 40–45 (2013). https://doi.org/10.1016/j.jmmm.2013.02.028

    Article  CAS  ADS  Google Scholar 

  16. Laokul, P., Arthan, S., Maensiri, S., Swatsitang, E.: Magnetic and optical properties of CoFe2O4 nanoparticles synthesized by reverse micelle microemulsion method. J. Supercond. Nov. Magn. 28, 2483–2489 (2015). https://doi.org/10.1007/s10948-015-3068-8

    Article  CAS  Google Scholar 

  17. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Ramalingam, R.J., Al-Lohedan, H.A.: Comparative investigation on the structural, morphological, optical, and magnetic properties of CoFe2O4 nanoparticles. Ceram. Int. 43, 7682–7689 (2017). https://doi.org/10.1016/j.ceramint.2017.03.069

    Article  CAS  Google Scholar 

  18. Köseoğlu, Y., Oleiwi, M.I.O., Yilgin, R., Koçbay, A.N.: Effect of chromium addition on the structural, morphological and magnetic properties of nano-crystalline cobalt ferrite system. Ceram. Int. 38, 6671–6676 (2012). https://doi.org/10.1016/j.ceramint.2012.05.055

    Article  CAS  Google Scholar 

  19. Patil, A.B., Panda, R.N.: Synthesis, characterizations and magnetic properties of nanoscale CoVxFe2-xO4 (0.0 ≤ x ≤ 0.9) materials synthesized via sol-gel autocombustion route. Mater. Chem. Phys. 307, 128215 (2023). https://doi.org/10.1016/j.matchemphys.2023.128215

    Article  CAS  Google Scholar 

  20. Bhagwat, V.R., Humbe, A.V., More, S.D., Jadhav, K.M.: Sol-gel auto combustion synthesis and characterisations of cobalt ferrite nanoparticles: different fuels approach. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 248, 114388 (2019). https://doi.org/10.1016/j.mseb.2019.114388

    Article  CAS  Google Scholar 

  21. Arshad, J.M., Raza, W., Amin, N., Nadeem, K., Arshad, M.I., Khan, M.A.: Synthesis and characterization of cobalt ferrites as MRI contrast agent. Mater. Today Proc. 47, S50–S54 (2021). https://doi.org/10.1016/j.matpr.2020.04.746

    Article  CAS  Google Scholar 

  22. Dalavi, S.B., Mishra, P.P., Cherian, T., Raja, M.M., Panda, R.N.: Magnetic and Mӧssbauer studies on nanostructured CoCrxFe2-xO4 (0 ≤ x ≤ 1) spinel ferrites prepared by sol-gel auto combustion method. J. Nanosci. Nanotechnol. 20, 983–990 (2020). https://doi.org/10.1166/jnn.2020.16891

    Article  CAS  PubMed  Google Scholar 

  23. Sarmah, S., Akansha, Maji, P.K., Ravi, S., Bora, T.: Effect of cation distribution and temperature variation on magnetic and dielectric properties of manganese substituted cobalt ferrites. Solid State Commun. 324, 114146 (2021). https://doi.org/10.1016/j.ssc.2020.114146

    Article  CAS  Google Scholar 

  24. Hashim, M., Alimuddin, Kumar, S., Shirsath, S.E., Kotnala, R.K., Shah, J., Kumar, R.: Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139, 364–374 (2013). https://doi.org/10.1016/j.matchemphys.2012.09.019

    Article  CAS  Google Scholar 

  25. Maksoud, M.I.A.A., El-ghandour, A., El-Sayyad, G.S., Awed, A.S., Fahim, R.A., Atta, M.M., Ashour, A.H., El-batal, A.I., Gobara, M., Khalek, E.K.A., El-Okr, M.M.: Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. Mater. Electron. 30, 4908–4919 (2019). https://doi.org/10.1007/s10854-019-00785-4

    Article  CAS  Google Scholar 

  26. Vinosha, P.A., Manikandan, A., Ceicilia, A.S.J., Dinesh, A., Nirmala, G.F., Preetha, A.C., Slimani, Y., Almessiere, M.A., Baykal, A., Xavier, B.: Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. 47, 10512–10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289

    Article  CAS  Google Scholar 

  27. Wu, X., Yu, X.H., Dong, H.: Enhanced infrared radiation properties of CoFe2O4 by doping with Y3+ via sol-gel auto-combustion. Ceram. Int. 40, 12883–12889 (2014). https://doi.org/10.1016/j.ceramint.2014.04.147

    Article  CAS  Google Scholar 

  28. Turtelli, R.S., Atif, M., Mehmood, N., Kubel, F., Biernack, K., Linert, W., Grossinger, R., Kapusta, Cz., Sikora, M.: Interplay between the cation distribution and production methods in cobalt ferrite. Mater. Chem. Phys. 132, 832–838 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.020

    Article  CAS  Google Scholar 

  29. Chakraborty, S., Dutta, A., Pal, M.: Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J. Alloys Compd. 625, 216–223 (2015). https://doi.org/10.1016/j.jallcom.2014.10.179

    Article  CAS  Google Scholar 

  30. Mishra, S., Karak, N., Kundu, T.K., Das, D., Maity, N., Chakravorty, D.: Nanocrystalline nickel ferrites prepared by doping with niobium ions. Mater. Lett. 60, 1111–1115 (2006). https://doi.org/10.1016/j.matlet.2005.10.085

    Article  CAS  Google Scholar 

  31. Lakshmi, C.S., Sridhar, C.S.L.N., Govindraj, G., Bangarajju, S., Potukuchi, D.M.: Experimental characterization of nanocrystalline niobium-doped nickel-zinc ferrites: occurrence of superparamagnetism. J. Mater. Sci. 51, 8382–8399 (2016). https://doi.org/10.1007/s10853-016-0088-0

    Article  CAS  ADS  Google Scholar 

  32. Almessiere, M.A., Slimani, Y., Guner, S., Nawaz, M., Baykal, A., Aldakheel, F., Sadaqat, A., Ercan, I.: Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J. Mol. Struct. 1195, 269–279 (2019). https://doi.org/10.1016/j.molstruc.2019.05.075

    Article  CAS  ADS  Google Scholar 

  33. Almessiere, M.A., Slimani, Y., Sertkol, M., Nawaz, M., Sadaqat, A., Baykal, A., Ercan, I., Ozçelik, B.: Effect of Nb3+ substitution on the structural, magnetic, and optical properties of Co0.5Ni0.5Fe2O4 nanoparticles. Nanomaterials 9, 430 (2019). https://doi.org/10.3390/nano9030430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Almessiere, M.A., Slimani, Y., Güner, S., Nawaz, M., Baykal, A., Aldakheel, F., Akhtar, S., Ercan, I., Belenli, İ, Ozçelik, B.: Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222–8232 (2019). https://doi.org/10.1016/j.ceramint.2019.01.125

    Article  CAS  Google Scholar 

  35. Kiran, R.R., Mondal, R.A., Dwevedi, S., Markandeyulu, G.: Structural, magnetic and magnetoelectric properties of Nb substituted Cobalt Ferrite. J. Alloys Compd. 610, 517–521 (2014). https://doi.org/10.1016/j.jallcom.2014.05.051

    Article  CAS  Google Scholar 

  36. Ghone, D.M., Mathe, V.L., Patankar, K.K., Kaushik, S.D.: Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J. Alloys Compd. 739, 52–61 (2018). https://doi.org/10.1016/j.jallcom.2017.12.219

    Article  CAS  Google Scholar 

  37. Heiba, Z.K., Mostafa, N.Y., Abd-Elkader, O.H.: Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 368, 246–251 (2014). https://doi.org/10.1016/j.jmmm.2014.05.036

    Article  CAS  ADS  Google Scholar 

  38. Das, S.B., Singh, R.K., Kumar, V., Kumar, N., Singh, P., Naik, N.K.: Structural, magnetic, optical and ferroelectric properties of Y3+ substituted cobalt ferrite nanomaterials prepared by a cost-effective sol-gel route. Mater. Sci. Semicond. Process. 145, 106632 (2022). https://doi.org/10.1016/j.mssp.2022.106632s

    Article  CAS  Google Scholar 

  39. Zak, A.K., Majid, W.H.A., Abrishami, M.E., Yousefi, A.R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  ADS  Google Scholar 

  40. Toksha, B.G., Shrisath, S.E., Mane, M.L., Patange, S.M., Jadhav, S.S., Jadhav, K.M.: Autocombustion high- temperature synthesis, structural, and magnetic properties of CoCrxFe2−xO4 (0≤ x≤ 1.0). J. Phys. Chem. C. 115, 20905–20912 (2011). https://doi.org/10.1021/jp205572m

    Article  CAS  Google Scholar 

  41. Karimi, Z., Mohammadifar, Y., Shokrollahi, H., Asl, S.K., Yousefi, G., Karimi, L.: Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014). https://doi.org/10.1016/j.jmmm.2014.01.016

    Article  CAS  ADS  Google Scholar 

  42. Cullity, B.D., Graham, C.D.: Ferrimagnetism. In: Cullity, B.D., Graham, C.D. (eds.) Introduction to Magnetic Materials, 2nd edn., pp. 175–195. John Wiley & Sons, New Jersey (2009)

    Google Scholar 

  43. Kim, Y.I., Kim, D., Lee, C.S.: Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B Condens. Matter. 337, 42–51 (2003). https://doi.org/10.1016/S0921-4526(03)00322-3

    Article  CAS  ADS  Google Scholar 

  44. Pachpinde, A.M., Langade, M.M., Lohar, K.S., Patange, S.M., Shirsath, S.E.: Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4. Chem. Phys. 429, 20–26 (2014). https://doi.org/10.1016/j.chemphys.2013.11.018

    Article  CAS  Google Scholar 

  45. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., Kožáková, Z.: Impact of Nd3+ in CoFeO4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016). https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  CAS  ADS  Google Scholar 

  46. Sarmah, S., Maji, D., Ravi, S., Bora, T.: Effect of Cr3+ substitution on the magnetic and dielectric properties of cobalt ferrites. J. Alloys Compd. 960, 170589 (2023). https://doi.org/10.1016/j.jallcom.2023.170589

    Article  CAS  Google Scholar 

  47. Morrish, A.H., Haneda, K.: Surface magnetic properties of fine particles. J. Magn. Magn. Mater. 35, 105–113 (1983). https://doi.org/10.1016/0304-8853(83)90468-7

    Article  CAS  ADS  Google Scholar 

  48. Mohammadbagheri, E., Jaberolansar, E., Kameli, P., Nikmanesh, H.: Impact of size and shape of particles on the magnetic properties of chromium doped cobalt ferrite. Mater. Chem. Phys. 301, 127551 (2023). https://doi.org/10.1016/j.matchemphys.2023.127551

    Article  CAS  Google Scholar 

  49. Wu, X., Xu, J., Huo, X., Chen, J., Zhang, Q., Huang, F., Li, Y., Su, H., Li, L.: Nb2O5–doped NiZnCo ferrite ceramics with ultra-high magnetic quality factor and low coercivity for high-frequency electronic devices. J. Eur. Ceram. Soc. 41, 5193–5200 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.038

    Article  CAS  Google Scholar 

  50. Jing, X., Guo, M., Li, Z., Qin, C., Chen, Z., Li, Z., Gong, H.: Study on structure and magnetic properties of rare earth doped cobalt ferrite: The influence mechanism of different substitution positions. Ceram. Int. 49, 14046–14056 (2023). https://doi.org/10.1016/j.ceramint.2022.12.286

    Article  CAS  Google Scholar 

  51. Yang, Y., Zhang, H., Li, J., Xu, F., Gan, G., Wen, D.: Effects of Bi2O3–Nb2O5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ceramics. Ceram. Int. 44, 10545–10550 (2018). https://doi.org/10.1016/j.ceramint.2018.03.076

    Article  CAS  Google Scholar 

  52. Zhou, T., Zhang, H., Liu, C., Jin, L., Xu, F., Liao, Y., Jia, N., Wang, Y., Gan, G., Su, H., Jia, L.: Li2O-B2O3-SiO2-CaO-Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology. Ceram. Int. 42, 16198–16204 (2016). https://doi.org/10.1016/j.ceramint.2016.07.141

    Article  CAS  Google Scholar 

  53. Ningthoujam, R.S., Panda, R.N., Gajbhiye, N.S.: Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route. Mater. Chem. Phys. 134, 377–381 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Central Sophisticated Instrumentation Facility (CSIF), BITS Pilani K K Birla Goa Campus for the provision of XRD and FESEM data procurements. We acknowledge the Department of Physics, BITS PILANI K K Birla Goa Campus and Department of Science and Technology (DST), Government of India for Department of Science and Technology Funds for Improvement of Science and Technology (DST-FIST) grant number SR/FST/PS-I/2017/21 for PPMS VSM measurements. One of the authors, Anagha B. Patil is thankful for the SRF fellowship to BITS Pilani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi N. Panda.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.B., Panda, R.N. Magnetic Properties of CoNbyFe2-yO4 (0.00 ≤ y ≤ 0.08) Nanomaterials Synthesized via Modified Sol–gel Autocombustion Route. J Supercond Nov Magn 37, 597–608 (2024). https://doi.org/10.1007/s10948-024-06698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06698-6

Keywords

Navigation