Skip to main content
Log in

Magnetocaloric Effects and Critical Behavior of La0.7Ca0.3−xSrxMnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, polycrystalline samples of La0.7Ca0.3−xSrxMnO3 (x = 0.00, 0.10, and 0.25) were prepared using the conventional solid-phase reaction method. The magnetocaloric effects and critical behavior of this series of polycrystalline materials were investigated. The research results indicate that all the samples are single-phase with an orthorhombic structure, belonging to the space group Pbnm. Under a magnetic field of 7 T, the maximum magnetic entropy changes of the samples were 9.74, 7.37, and 6.11 J·kg−1·K−1, respectively, and the relative cooling power are 360.53, 361.04, and 366.50 J·kg−1, respectively. The doped samples demonstrate superior magnetic refrigeration ability compared to the parent phase. It is noteworthy that the Curie temperature increases from 243 K (x = 0.00) to 295 K (x = 0.10) and 350 K (x = 0.25). In addition, there is a transition from a first-order to a second-order phase transition in the sample with x = 0.25. The critical behavior of the compounds with x = 0.25 was analyzed using various methods, including modified Arrott plots, the Kouvel-Fisher method, and critical isotherm, to determine critical exponents (β, γ, and δ). The results obtained from both methods are close and indicate that the critical behavior of the sample crosses between mean field model and 3D-Heisenberg model. The temperature dependence of the order parameter n for different magnetic fields is studied using the relation |∆SM|∝ Hn. The values of n not only reveal the type of phase transition of the system but also validate the critical exponents. The results indicate that La0.7Ca0.3−xSrxMnO3 (x = 0.10, and 0.25) ceramics have the potential to be used as room-temperature magnetic refrigeration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article and its supplementary materials. Additional data may be available from the corresponding author upon reasonable request.

References

  1. Li, R.W., Zhang, C.J., Pi, L., Zhang, Y.H.: Tricritical point in hole-doped manganite La0.5Ca0.4Li0.1MnO3. Europhys. Lett. 107(4), 47006 (2014)

    Article  ADS  Google Scholar 

  2. Phan, T.L., Zhang, Y.D., Zhang, P., Thanh, T.D., Yu, S.C.: Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112(9), 093906 (2012)

    Article  ADS  Google Scholar 

  3. Zhang, P., Phan, T.L., Yu, S.C.: Magnetocaloric effect in La0.7Cd0.3MnO3, La0.7Ba0.3MnO3, and Nd0.7Sr0.3MnO3. J. Supercond. Nov. Magn. 25, 2727–2730 (2012)

    Article  CAS  Google Scholar 

  4. Li, L.W., Hu, G.H., Umehara, I., Huo, D.X., Namiki, T., Nishimura, K.: Pressure effects on magnetic and magnetocaloric properties of GdCo2B2. J. Phys. Soc. Jpn. 81(7), 073701 (2012)

    Article  ADS  Google Scholar 

  5. Zhang, Y.K., Zhu, J., Li, S., Zhang, Z.Q., Wang, J., Ren, Z.M.: Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Sci. China Mater. 65(5), 1345–1352 (2022)

    Article  CAS  Google Scholar 

  6. Liu, W., Gottschall, T., Scheibel, F., Bykov, E., Fortunato, N., Aubert, A., Zhang, H.B., Skokov, K., Gutfleisch, O.: Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases. J. Phys. Energy 5(3), 034001 (2023)

    Article  CAS  ADS  Google Scholar 

  7. Ma, Z.P., Xu, P., Ying, J.Y., Zhang, Y.K., Li, L.W.: Insight into the structural and magnetic properties of RECo12B6 (RE = Ce, Pr, Nd) compounds: a combined experimental and theoretical investigation. Acta Mater. 247, 118757 (2023)

    Article  CAS  Google Scholar 

  8. Zhang, Y.K., Xu, P., Zhu, J., Yan, S.M., Zhang, J.C., Li, L.W.: The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023)

    Article  CAS  Google Scholar 

  9. Zhang, Y., Hao, W., Hu, C., et al.: Rare‐earth‐free Mn30Fe20−xCuxAl50 magnetocaloric materials with stable cubic CsCl‐type structure for room‐temperature refrigeration. Adv. Funct. Materi. 2310047 (2023)

  10. Arumugam, S., Sarkar, P., Mandal, P., Murugeswari, A., Matsubayashi, K., Ganguli, C., Uwatoko, Y.: Effect of hydrostatic pressure on magnetic phase transition and magnetocaloric properties of (Sm0.8Nd0.2)0.52Sr0.48MnO3. J. Appl. Phys. 107(11), 113904 (2010)

    Article  ADS  Google Scholar 

  11. Guo, S.P., Mao, Y.W., Wang, R.L., Yang, C.P., Xia, Z.C.: High-pressure synthesis, structure and magnetic properties of LaCrO3 ceramics. J. Hubei Eng. Univ. 37(06), 51–55 (2017)

    Google Scholar 

  12. Krishnamoorthi, C., Barik, S.K., Siu, Z., Mahendiran, R.: Normal and inverse magnetocaloric effects in La0.5Ca0.5Mn1-xNixO3. Solid State Commun. 150(35), 1670–1673 (2010)

    Article  CAS  ADS  Google Scholar 

  13. Zhao, B.C., Song, W.H., Ma, Y.Q., Zhang, R.L., Yang, J., Sheng, Z.G., Lu, W.J., Dai, M.J., Sun, Y.P.: Magnetic and transport properties of Co-doped manganite La0.7Sr0.3Mn1-xCoxO3(0≤x≤0.5). Phys. Stat. Sol. 242(8), 1719 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Hagary, E.M., Shoker, Y.A., Mohammad, S., Moustafa, A.M., Ramadan, A.A.: Structural and magnetic properties of polycrystalline La0.77Sr0.23Mn1-xCuxO3 (0≤x≤0.5) manganites. J. Alloys Compd. 468(1–2), 47 (2009)

    Article  Google Scholar 

  15. Mukadam, M.D., Yusuf, S.M.: Magnetocaloric effect in the La0.67Ca0.33Mn0.9Fe0.1O3 perovskite over a broad temperature range. J. Appl. Phys. 105(6), 945 (2009)

    Article  Google Scholar 

  16. Zhang, Y.K., Tian, Y., Zhang, Z.Q., Jia, Y.S., Zhang, B., Jiang, M.Q., Wang, J., Ren, Z.M.: Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater. 226, 117669 (2022)

    Article  CAS  Google Scholar 

  17. Li, L.W., Yan, M.: Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J. Mater. Sci. Technol. 136, 1–12 (2023)

    Article  CAS  Google Scholar 

  18. Xu, P., Hu, L., Zhang, Z.Q., Wang, H.F., Li, L.W.: Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE= Gd, Dy, Ho, and Er) compounds. Acta Mater. 236, 118114 (2022)

    Article  CAS  Google Scholar 

  19. Garcia-Munoz, J.L., Fontcuberta, J., Martinez, B., Seffar, A., Pinol, S., Obradors, X.: Magnetic frustration in mixed valence manganites. Phys. Rev. B 55(2), R668 (1997)

    Article  CAS  ADS  Google Scholar 

  20. Ćwik, J., Koshkid’ko, Y., Nenkov, K., Mikhailova, A., Malecka, M., Romanova, T., Kolchugina, N., De Oliveira, N.A.: Experimental and theoretical analysis of magnetocaloric behavior of Dy1-xErxNi2 intermetallics (x= 0.25, 0.5, 0.75) and their composites for low-temperature refrigerators performing an Ericsson cycle. Phys. Rev. B 103(21), 214429 (2021)

    Article  ADS  Google Scholar 

  21. Zhang, Y.K., Yang, Y., Xu, X., Geng, S.H., Hou, L., Li, X., Ren, Z.M., Wilde, G.: Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  22. Romero-Muniz, C., Ipus, J.J., Blazquez, J.S., Franco, V., Conde, A.: Influence of the demagnetizing factor on the magnetocaloric effect: critical scaling and numerical simulations. Appl. Phys. Lett. 104(25) (2014)

  23. Henchiri, C., Omari, L.H., Mnasri, T., Benali, A., Dhahri, E., Valente, M.A.: Theoretical study of the magnetic properties and the magnetocaloric effect in lanthanum manganite lacunar compounds. J. Alloy. Compd. 905, 164196 (2022)

    Article  CAS  Google Scholar 

  24. Li, L.W., Yan, M.: Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. J. Alloy. Compd. 823, 153810 (2020)

    Article  CAS  Google Scholar 

  25. Liu, J., Wang, W.Q., Wu, H.Y., Tian, Y., Cao, F.Z., Zhao, J.J.: Electromagnetic properties of Co-doped perovskite manganese oxide La0.8Sr0.2MnO3. J. Inorg. Mater. 33(11), 1237–1247 (2018)

    Article  Google Scholar 

  26. Yamada, H.: Metamagnetic transition and susceptibility maximum in an itinerant-electron system. Phys. Rev. B 47(17), 11211 (1993)

    Article  CAS  ADS  Google Scholar 

  27. Gschneidner, K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68(6), 1479 (2005)

    Article  CAS  ADS  Google Scholar 

  28. Choura-Maatar, S., Nofal, M.M., M’nassri R, Cheikhrouhou-Koubaa W, Chniba-Boudjada N, Cheikhrouhou A,: Enhancement of the magnetic and magnetocaloric properties by Na substitution for Ca of La0.8Ca0.2MnO3 manganite prepared via the Pechini-type sol–gel process. J. Mater. Sci. Mater. Electr. 31, 1634–1645 (2020)

    Article  CAS  Google Scholar 

  29. Morelli, D.T., Mance, A.M., Mantese, J.V., Micheli, A.L.: Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79(1), 373–375 (1996)

    Article  CAS  ADS  Google Scholar 

  30. Barik, S.K., Mahendiran, R.: Effect of Bi doping on magnetic and magnetocaloric properties of La0.7-xBixSr0.3MnO3 (0≤x≤0.4). J. Appl. Phys. 107(9), 093906 (2010)

    Article  ADS  Google Scholar 

  31. Zhang, Y.K., Zhu, J., Li, S., Wang, J., Ren, Z.M.: Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J. Mater. Sci. Technol. 102, 66–71 (2022)

    Article  CAS  Google Scholar 

  32. Guo, D., Moreno-Ramírez, L.M., Law, J.Y., Zhang, Y.K., Franco, V.: Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or Er) compounds. Sci. China Mater. 66(1), 249–256 (2023)

    Article  CAS  Google Scholar 

  33. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  34. Franco, V., Conde, A., Provenzano, V., Shull, R.D.: Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322(2), 218–223 (2010)

    Article  CAS  ADS  Google Scholar 

  35. Cao, F.Z., Chen, H.W., Xie, Z.K., Lu, Y., Zhao, J.J., Jin, X.: Magnetic properties and magnetic entropy changes of perovskite manganese oxide La0.8-xEuxSr0.2MnO3 (x = 0, 0.075). Chin. J. Phys. 65, 424–435 (2020)

    Article  CAS  Google Scholar 

  36. Kaul, S.N.: Critical exponents from high-precision ac susceptibility data. J. Magn. Magn. Mater. 53, 5 (1985)

    Article  CAS  ADS  Google Scholar 

  37. Law, J.Y., Franco, V., Moreno-Ramírez, L.M., Conde, A., Karpenkov, D.Y., Radulov, I., Skokov, K.P., Gutfleisch, O.: A quantitative criterion for determining the order of phase transitions using the magnetocaloric effect. Nat. Commun. 9(1), 2680 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Oesterreicher, H., Parker, F.T.: Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55(12), 4334 (1984)

    Article  CAS  ADS  Google Scholar 

  39. Su, Y.T.: Study on magnetocaloric effect and critical behavior of perovskite rare earth titanate crystals. Harbin Inst. Technol. (2013)

  40. Thanh, T.D., Linh, D.C., Manh, T.V., Ho, T.A., Phan, T.-L., Yu, S.C.: Coexistence of short-and long-range ferromagnetic order in La0.7Sr0.3Mn1-xCoxO3 compounds. J. Appl. Phys. 117(17), 17C101 (2015)

    Article  Google Scholar 

  41. Vadnala, S., Asthana, S.: Magnetocaloric effect and critical field analysis in Eu substituted La0.7-xEuxSr0.3MnO3 (x=0.0,0.1,0.2,0.3) manganites. J. Magn. Magn. Mater. 446, 68–79 (2018)

    Article  CAS  ADS  Google Scholar 

  42. Chen, H.W., Li, C., Zhao, J.J., Lu, Y., Cao, F.Z., Wang, W.X., Zheng, L., Jin, X.: Critical field analysis and magnetocaloric effect of A-site double-doped manganese oxide La0.9EuSr0.1MnO3. J. Supercond. Nov. Magn. 34, 2651–2666 (2021)

    Article  CAS  Google Scholar 

  43. Zhang, P., Piao, H.G., Zhang, Y.D., Huang, J.H.: Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Phys. Sin. 70(15), 256–271 (2021)

    Article  Google Scholar 

Download references

Funding

This project was supported by the State Key Development Program for Basic Research of China (Grant No. 51562032) and the 2021 Intramural Project — La0.75Sr0.25Mn1-xCoxO3 (x = 0.0 ~ 0.2) series polycrystalline samples high-pressure preparation, magnetic, and magnetothermal effect study (Grant No. 30234013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Zhao or Tegus O.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Zhao, J., Ma, H. et al. Magnetocaloric Effects and Critical Behavior of La0.7Ca0.3−xSrxMnO3. J Supercond Nov Magn 37, 609–622 (2024). https://doi.org/10.1007/s10948-024-06697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06697-7

Keywords

Navigation