Skip to main content
Log in

Effective control of Fusarium wilt on tomatoes using a combination of phenolic-rich plant extracts

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phenolic compounds occur in plants as secondary metabolites with potent biological activity to control pathogens. Tomato is the world’s second most cultivated vegetable but suffers attack by Fusarium oxysporum, causing Fusarium wilt disease that severely impacts crop yield and quality. This study focused on four phenolic-rich plant extracts and their mixtures to control F. oxysporum in vitro and in tomatoes. The highest phenolic sources were Eucalyptus camaldulensis, Chromolaena odorata, Bidens pilosa, and Azadirachta indica with superior phenolic contents ranging from 33.49 to 95.29 mg GAE/g. Crucial phenolic compounds identified in the plant samples included gallic acid (36.37 – 152.75 mg/100 g), chlorogenic acid (45.15 – 503.21 mg/100 g), and rutin (24.23 – 323.44 mg/100 g). The in vitro antifungal activity of the plant extracts correlated well with their total phenolic contents. The extract combination exhibited a synergistic effect on F. oxysporum with inhibitoty activity at 9.3, 5.5, 4.6 and 3.0 folds higher than the individual extracts of A. indica, B. pilosa, E. camaldulensis, and C. odorata, respectively. At the greenhouse scale, preventive and curative treatment using the phenolic-rich extract mixture significantly reduced the disease index by 26.7% and 28.0%, respectively at day 28 after fungal infection. Preventive treatment gave the best control efficacy of 61.27% at day 14 that was comparable to the chemical fungicide Ridomil Gold. Additionally, the application of the combined extract significantly improved the tomato growth parameters such as height and stem diameter. Results demonstrated that use of crude plant extracts rich in polyphenols was an effective, economical, and practical approach to manage crop pathogens on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TPC :

Total phenolic content

GAE :

Gallic acid equivalent

TFC :

Total flavonoid content

QE :

Quercetin equivalent

TTC :

Total tannin content

RP HPLC :

Reversed Phase – High Performance Liquid Chromatography

PDA :

Potato dextrose agar

MGI :

Mycelial growth inhibition

SF :

Synergy factor

DNA :

Deoxyribonucleic acid

A :

Azadirachta indica

B :

Bidens pilosa

C :

Chromolaena odorata

E :

Eucalyptus camaldulensis

MIC :

Minimum inhibitory concentration

CE :

Combined extract

SA :

Salicylic acid

References

  • Abdelkhalek, A., Salem, M. Z. M., Kordy, A. M., Salem, A. Z. M., & Behiry, S. I. (2020). Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microbial Pathogenesis, 147, 104383.

    Article  CAS  PubMed  Google Scholar 

  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.

  • Amjed, S., Junaid, K., Jafar, J., Amjad, T., Maqsood, W., Mukhtar, N., Tariq, K., Sharif, M., Awan, D., & Ansari, F. (2017). Detection of antibacterial activities of Miswak, Kalonji and Aloe vera against oral pathogens & anti-proliferative activity against cancer cell line. BMC Complementary and Alternative Medicine, 17(1), 1–10.

  • Angelini, P., Matei, F., Flores, G. A., Pellegrino, R. M., Vuguziga, L., Venanzoni, R., Tirillini, B., Emiliani, C., Orlando, G., Menghini, L., & Ferrante, C. (2021). Metabolomic profiling, antioxidant and antimicrobial activity of bidens pilosa. Processes, 9(6), 903.

  • Atanassova, M., Christova-Bagdassarian, V. (2009). Determination of tannins content by titrimetric method for comparison of different plant species. Journal of the University of Chemical Technology and Metallurgy 44(4), 413–415.

  • Babosha, A. V. (2004). Changes in lectin activity in plants treated with resistance inducers. Biology Bulletin of the Russian Academy of Sciences, 31, 51–55.

    Article  CAS  Google Scholar 

  • Balasubramanian, I., Yusha’u, M., & Abubakar, S. (2014). Synergistic effect of eucalyptus (Eucalyptus Camaldulensis) and guava (Psidium Guajava) ethanolic extracts on Eschericia Coli and Staphylococcus Aureus. Academic Research International, 5(6), 35.

    Google Scholar 

  • Bora, T., Özaktan, H., Göre, E., & Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathology, 152, 471–475.

    Article  Google Scholar 

  • Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19, 256–265.

    Article  CAS  PubMed  Google Scholar 

  • Bouslamti, M., El Barnossi, A., Kara, M., Alotaibi, B. S., Al Kamaly, O., Assouguem, A., Lyoussi, B., & Benjelloun, A. S. (2022). Total polyphenols content, antioxidant and antimicrobial activities of leaves of Solanum elaeagnifolium Cav. from Morocco. Molecules, 27(13), 4322.

  • Bruyne, T. D., Pieters, L., Deelstra, H., & Vlietinck, A. (1999). Condensed vegetable tannins: Biodiversity in structure and biological activities. Biochemical Systematics and Ecology, 27, 445–459.

    Article  Google Scholar 

  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug, 10(3).

  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Deba, F., Xuan, T. D., Yasuda, M., & Tawata, S. (2007). Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biology and Management, 7, 77–83.

    Article  CAS  Google Scholar 

  • Duarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118, 851–855.

    Article  CAS  Google Scholar 

  • Dy, R. L., Rigano, L. A., & Fineran, P. C. (2018). Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochemical Society Transactions, 46, 1605–1613.

    Article  CAS  PubMed  Google Scholar 

  • Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 100547.

    Article  CAS  Google Scholar 

  • Efenberger-Szmechtyk, M., Nowak, A., & Czyzowska, A. (2021). Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61, 149–178.

    Article  CAS  PubMed  Google Scholar 

  • El-Nagar, A., Elzaawely, A. A., Taha, N. A., & Nehela, Y. (2020). The antifungal activity of gallic acid and its derivatives against alternaria solani, the causal agent of tomato early blight. Agronomy, 10, 1402.

    Article  CAS  Google Scholar 

  • Elansary, H. O., Salem, M. Z., Ashmawy, N. A., Yessoufou, K., & El-Settawy, A. A. (2017). In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Natural Product Research, 31, 2927–2930.

    Article  CAS  PubMed  Google Scholar 

  • Essien, J. P., & Akpan, E. J. (2004). Antifungal activity of ethanolic leaf extract of Eucalyptus camaldulensis Dehn. Against ringworm pathogens. Global Journal of Pure Applied Sciences, 10, 37–41.

    Article  Google Scholar 

  • Eze, F. N., & Jayeoye, T. J. (2021). Chromolaena odorata (Siam weed): A natural reservoir of bioactive compounds with potent anti-fibrillogenic, antioxidative, and cytocompatible properties. Biomedicine & Pharmacotherapy, 141, 111811.

    Article  CAS  Google Scholar 

  • Farag Hanaa, R. M., Abdou, Z. A., Salama, D. A., Ibrahim, M. A. R., & Sror, H. A. M. (2011). Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences, 56, 1–7.

    Article  Google Scholar 

  • Fenibo, E. O., Ijoma, G. N., & Matambo, T. (2022). Biopesticides in sustainable agriculture: Current status and future prospects. In S. D. Mandal, G. Ramkumar, S. Karthi, & F. Jin (Eds.), New and future development in biopesticide research: Biotechnological exploration (pp. 1–53). Springer Nature Singapore, Singapore.

  • Ferrazzano, G. F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., & Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 16, 1486–1507.

  • Ferreira, P. S., Victorelli, F. D., Fonseca-Santos, B., & Chorilli, M. (2019). A review of analytical methods for p-Coumaric acid in plant-based products, beverages, and biological matrices. Critical Reviews in Analytical Chemistry, 49, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Wang, D., Belwal, T., Xu, Y., Li, L., & Luo, Z. (2021). Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chemistry, 355, 129577.

    Article  CAS  PubMed  Google Scholar 

  • Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25, 149–164.

    Article  PubMed  Google Scholar 

  • Gebashe, F., Aremu, A. O., Gruz, J., Finnie, J. F., & Van Staden, J. (2020). Phytochemical profiles and antioxidant activity of grasses used in South African traditional medicine. Plants, 9(3), 371.

  • Goupil, P., Benouaret, R., & Richard, C. (2017). Ethyl gallate displays elicitor activities in tobacco plants. Journal of Agriculture and Food Chemistry, 65, 9006–9012.

    Article  CAS  Google Scholar 

  • Hajji-Hedfi, L., Larayedh, A., Hammas, N.-C., Regaieg, H., & Horrigue-Raouani, N. (2019). Biological activities and chemical composition of Pistacia lentiscus in controlling Fusarium wilt and root-knot nematode disease complex on tomato. European Journal of Plant Pathology, 155, 281–291.

    Article  CAS  Google Scholar 

  • Hatano, T., Kusuda, M., Inada, K., Ogawa, T.-O., Shiota, S., Tsuchiya, T., & Yoshida, T. (2005). Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry, 66, 2047–2055.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, M., Kusomoto, I. T., Namba, T., Ishigami, T., & Hara, Y. (1990). Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chemical and Pharmaceutical Bulletin, 38, 717–720.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. T., Lee, B.-R., La, V. H., Lee, H., Jung, W.-J., Bae, D.-W., & Kim, T.-H. (2019). p-Coumaric acid induces jasmonic acid-mediated phenolic accumulation and resistance to black rot disease in Brassica napus. Physiological and Molecular Plant Pathology, 106, 270–275.

    Article  CAS  Google Scholar 

  • Jabeen, K., Hanif, S., Naz, S., & Iqbal, S. (2013). Antifungal activity of Azadirachta indica against Alternaria solani. Life Sci Technol, 1, 89–93.

    Google Scholar 

  • Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10(2), 173.

  • Jasso de Rodríguez, D., Gaytán-Sánchez, N. A., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, L., Villarreal-Quintanilla, J. A., Flores-López, M. L., Carrillo-Lomelí, D. A., & Peña-Ramos, F. M. (2019). Antifungal activity of Juglans spp. and Carya sp. ethanol extracts against Fusarium oxysporum on tomato under greenhouse conditions. Industrial Crops and Products, 138, 111442.

  • Jiao, W., Li, X., Wang, X., Cao, J., & Jiang, W. (2018). Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway. Food Chemistry, 260, 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Kabiru, A., Okogun, J., Gbodi, T. A., Makun, H., & Ogbadoyi, E. O. (2012). Evaluation of the efficacy of combination therapy in T. b. brucei infected mice using extracts of Annona senegalensis and Eucalyptus camaldulensis. IOSR Journal of Pharmacy (IOSRPHR), 2, 32–37.

    Article  Google Scholar 

  • Khatkar, A., Nanda, A., Kumar, P., & Narasimhan, B. (2017). Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arabian Journal of Chemistry, 10, S3804–S3815.

    Article  CAS  Google Scholar 

  • Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., Malik, N. A., & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173, 105854.

    Article  CAS  PubMed  Google Scholar 

  • Khurshid, S., Shoaib, A., Javaid, A., Akhtar, F., Shafiq, M., & Qaisar, U. (2017). Management of Fusarium wilt of tomato by soil amendment with Cenchrus pennisetiformis under chromium stress. Physiological and Molecular Plant Pathology, 97, 58–68.

    Article  CAS  Google Scholar 

  • Kosman, E. (1996). Procedures for calculating and differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 86, 1263–1272.

    CAS  Google Scholar 

  • Kumar, G., Bajpai, R., Teli, B., Meher, J., Rashid, M. M., & Sarma, B. K. (2020). Management of Fusarium udum causing wilt of Pigeon Pea. In B. P. Singh, G. Singh, K. Kumar, S. C. Nayak, & N. Srinivasa (Eds.), Management of fungal pathogens in pulses: Current status and future challenges (pp. 191–204). Springer International Publishing.

    Chapter  Google Scholar 

  • Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185.

  • Levy, Y., Benderly, M., Cohen, Y., Gisi, U., & Bassand, D. (1986). The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bulletin, 16, 651–657.

    Article  Google Scholar 

  • Li, Z. J., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. G., & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy Research, 31, 1039–1045.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lima Silva, F., Fischer, D. C. H., Fechine Tavares, J., Sobral Silva, M., Filgueiras de Athayde-Filho, P., & Barbosa-Filho, J. M. (2011). Compilation of secondary metabolites from Bidens pilosa L. Molecules, 16, 1070–1102.

  • Lou, Z., Wang, H., Rao, S., Sun, J., Ma, C., & Li, J. (2012). p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 25, 550–554.

    Article  CAS  Google Scholar 

  • Lykogianni, M., Bempelou, E., Karamaouna, F., & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of the Total Environment, 795, 148625.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ma, C.-M., Kully, M., Khan, J. K., Hattori, M., & Daneshtalab, M. (2007). Synthesis of chlorogenic acid derivatives with promising antifungal activity. Bioorganic & Medicinal Chemistry, 15, 6830–6833.

    Article  CAS  Google Scholar 

  • Madege, R. R., Babu, S., Mabiki, F. P., Mtui, H., & Kudra, A. (2023). Fungicidal effects of Commiphora swynnertonii (Burrt.) and Synadenium glaucescens (Pax.) against tomato fusarium wilt disease. Journal of Natural Pesticide Research, 4, 100033.

  • Makhuvele, R., Naidu, K., Gbashi, S., Thipe, V. C., Adebo, O. A., & Njobeh, P. B. (2020). The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon, 6, e05291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makoi, J. H. J. R., Belane, A. K., Chimphango, S. B. M., & Dakora, F. D. (2010). Seed flavonoids and anthocyanins as markers of enhanced plant defence in nodulated cowpea (Vigna unguiculata L. Walp.). Field Crops Research, 118, 21–27.

    Article  Google Scholar 

  • Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., & de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 140, 30–35.

    Article  PubMed  Google Scholar 

  • Mirghani, M. (2022). A Review of antifungal activity of combined plant extracts or plant exudates from medicinal plants either together or with known antifungal agents. European Journal of Medicinal Plants, 33(8), 16–47.

    Google Scholar 

  • Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment, 801, 149719.

    Article  ADS  PubMed  Google Scholar 

  • Mostafalou, S., & Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91, 549–599.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., & Patel, J. S. (2020). Seaweed extract: Biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology, 17, 553–558.

    Article  Google Scholar 

  • Nakamura, K., Ishiyama, K., Sheng, H., Ikai, H., Kanno, T., & Niwano, Y. (2015). Bactericidal activity and mechanism of photoirradiated polyphenols against gram-positive and -negative bacteria. Journal of Agricultural and Food Chemistry, 63, 7707–7713.

    Article  CAS  PubMed  Google Scholar 

  • Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67–74.

    Article  CAS  Google Scholar 

  • Neglo, D., Adzaho, F., Agbo, I. A., Arthur, R., Sedohia, D., Tettey, C. O., & Waikhom, S. D. (2022). Antibiofilm activity of azadirachta indica and catharanthus roseus and their synergistic effects in combination with antimicrobial agents against fluconazole-resistant candida albicans strains and MRSA. Evidence-Based Complementary and Alternative Medicine, 2022, 9373524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, D.-M.-C., Seo, D.-J., Lee, H.-B., Kim, I.-S., Kim, K.-Y., Park, R.-D., & Jung, W.-J. (2013). Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial Pathogenesis, 56, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, V. D. H., Nguyen, A. T. V., Truong, T. Q., Trinh, L. T. P., & Huynh, B. V. (2019). Optimization of total phenolic extraction of Chromolaena odorata leaf for antifungal activity against plant pathogens. The Journal of Agriculture and Development, 18, 38–48.

    Google Scholar 

  • Nxumalo, K., Aremu, A., & Fawole, O. (2021). Potentials of medicinal plant extracts as an alternative to synthetic chemicals in postharvest protection and preservation of horticultural crops: A review. Sustainability, 13, 5897.

    Article  CAS  Google Scholar 

  • Ogawa, S., & Yazaki, Y. (2018). Tannins from Acacia mearnsii De Wild. Bark: Tannin determination and biological activities. Molecules, 23(4), 837.

  • Omokhua, A. G., McGaw, L. J., Chukwujekwu, J. C., Finnie, J. F., & Van Staden, J. (2017). A comparison of the antimicrobial activity and in vitro toxicity of a medicinally useful biotype of invasive Chromolaena odorata (Asteraceae) with a biotype not used in traditional medicine. South African Journal of Botany, 108, 200–208.

    Article  CAS  Google Scholar 

  • Prabhakaran, G., Bhore, S., & Ravichandran, M. (2017). Development and evaluation of poly herbal molluscicidal extracts for control of Apple Snail (Pomacea maculata). Agriculture, 7, 22.

    Article  Google Scholar 

  • Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-Gros, R., Bigot, S., Martinez, J. P., & Lutts, S. (2019). Tomato fruit development and metabolism. Frontiers in Plant Science, 10, 1554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raut, R. R., Sawant, A. R., & Jamge, B. B. (2014). Antimicrobial activity of Azadirachta indica (Neem) against pathogenic microorganisms. Journal of Academia and Industrial Research, 3(7), 327–329.

  • Reddy, D. S., & Chowdary, N. M. (2021). Botanical biopesticide combination concept—a viable option for pest management in organic farming. Egyptian Journal of Biological Pest Control, 31, 1–10.

    Article  Google Scholar 

  • Rybina, O. Y., Symonenko, A. V., & Pasyukova, E. G. (2023). Compound combinations targeting longevity: Challenges and perspectives. Ageing Research Reviews, 85, 101851.

    Article  CAS  PubMed  Google Scholar 

  • Sabitha, M., & Mohamed, A. S. (2021). Antimicrobial activity of combined extracts of Carica papaya peels and Glycyrrhiza glabra roots. Gis Science Journal, 8, 402–408.

    Google Scholar 

  • Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30, 3875–3883.

    Article  CAS  Google Scholar 

  • Seepe, H. A. (2021). Isolation and characterisation of antifungal compounds from medicinal plants that are active against selected fusarium species (doctoral dissertation).

  • Silva, V., Yang, X., Fleskens, L., Ritsema, C. J., & Geissen, V. (2022). Environmental and human health at risk–Scenarios to achieve the Farm to Fork 50% pesticide reduction goals. Environment International, 165, 107296.

  • Singh, A., Gupta, R., & Pandey, R. (2017). Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiology and Molecular Biology of Plants, 23, 301–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D. P. (2014). Advances in Plant Biopesticides. In "Springer India".

  • Singh, U. P., Maurya, S., & Singh, D. P. (2005). Phenolic acids in Neem (Azadirachta indica). Journal of Herbal Pharmacotherapy, 5, 35–43.

    CAS  PubMed  Google Scholar 

  • Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26, 1315-1324.

  • Stankovic, S., Kostic, M., Kostic, I., & Krnjajic, S. (2020). Practical approaches to pest control: The use of natural compounds. Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production. IntechOpen London, UK.

  • Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580.

    Article  CAS  PubMed  Google Scholar 

  • Trinh, L. T. P., Choi, Y.-S., & Bae, H.-J. (2018). Production of phenolic compounds and biosugars from flower resources via several extraction processes. Industrial Crops and Products, 125, 261–268.

    Article  CAS  Google Scholar 

  • Upadhyay, A., Mooyottu, S., Yin, H., Nair, M. S., Bhattaram, V., & Venkitanarayanan, K. (2015). Inhibiting microbial toxins using plant-derived compounds and plant extracts. Medicines (basel), 2, 186–211.

    Article  CAS  PubMed  Google Scholar 

  • Voltz, M., Guibaud, G., Dagès, C., Douzals, J.-P., Guibal, R., Grimbuhler, S., Grünberger, O., Lissalde, S., Mazella, N., & Samouëlian, A. (2022). Pesticide and agro-ecological transition: Assessing the environmental and human impacts of pesticides and limiting their use. Environmental Science Pollution Research, 29, 1–5.

    Article  PubMed  Google Scholar 

  • Walia, S., Saha, S., Tripathi, V., & Sharma, K. K. (2017). Phytochemical biopesticides: Some recent developments. Phytochemistry Reviews, 16, 989–1007.

    Article  CAS  Google Scholar 

  • Wang, H., Zhao, M., Yang, B., Jiang, Y., & Rao, G. (2008). Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chemistry, 107, 1399–1406.

    Article  CAS  Google Scholar 

  • Wang, Y., Xu, Y., & Liu, Z. (2022). A review of plant antipathogenic constituents: Source, activity and mechanism. Pesticide Biochemistry and Physiology, 105225.

  • Yan, H., Meng, X., Lin, X., Duan, N., Wang, Z., & Wu, S. (2023). Antifungal activity and inhibitory mechanisms of ferulic acid against the growth of Fusarium graminearum. Food Bioscience, 52, 102414.

    Article  CAS  Google Scholar 

  • Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41, 1060–1066.

    Article  CAS  Google Scholar 

  • Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., Ding, X., & Chu, Z. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE, 11, e0146910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, C., Lei, M., Andargie, M., Zeng, J., & Li, J. (2019). Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiological and Molecular Plant Pathology, 107, 46–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a research grant (CS-CB23-VienCNSH-01) from Nong Lam University, Ho Chi Minh City, Vietnam.

Funding

Nong Lam University, Ho Chi Minh City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ly Thi Phi Trinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.D.H., Nguyen, T.T.T., Huynh, T.N.P. et al. Effective control of Fusarium wilt on tomatoes using a combination of phenolic-rich plant extracts. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02830-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-024-02830-3

Keywords

Navigation