Skip to main content
Log in

Analysis of a Combined Filtered/Phase-Field Approach to Topology Optimization in Elasticity

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We advance a combined filtered/phase-field approach to topology optimization in the setting of linearized elasticity. Existence of minimizers is proved and rigorous parameter asymptotics are discussed by means of variational convergence techniques. Moreover, we investigate an abstract space discretization in the spirit of conformal finite elements. Eventually, stationarity is equivalently reformulated in terms of a Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, vol. 146. Springer, New York (2002)

    Google Scholar 

  2. Almi, S., Stefanelli, U.: Topology optimization for incremental elastoplasticity: a phase-field approach. SIAM J. Control Optim. 59(1), 339–364 (2021)

    Article  MathSciNet  Google Scholar 

  3. Almi, S., Stefanelli, U.: Topology optimization for quasistatic elastoplasticity. ESAIM Control Optim. Calc. Var. 28, art. 47 (2022)

    Article  MathSciNet  Google Scholar 

  4. Amir, O., Lazarov, B.S.: Achieving stress-constrained topological design via length scale control. Struct. Multidiscip. Optim. 58(5), 2053–2071 (2018)

    Article  MathSciNet  Google Scholar 

  5. Auricchio, F., Bonetti, E., Carraturo, M., Hömberg, D., Reali, A., Rocca, E.: A phase-field-based graded-material topology optimization with stress constraint. Math. Models Methods Appl. Sci. 30(8), 1461–1483 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  7. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  8. Blank, L., Farshbaf-Shaker, M.H., Garcke, H., Styles, V.: Relating phase field and sharp interface approaches to structural topology optimization. ESAIM Control Optim. Calc. Var. 20(4), 1025–1058 (2014)

    Article  MathSciNet  Google Scholar 

  9. Borrvall, T., Petersson, J.: Topology optimization using regularized intermediate density control. Comput. Methods Appl. Mech. Eng. 190(37–38), 4911–4928 (2001)

    Article  MathSciNet  Google Scholar 

  10. Bourdin, B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50(9), 2143–2158 (2001)

    Article  MathSciNet  Google Scholar 

  11. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)

    Article  MathSciNet  Google Scholar 

  12. Bruns, T.E., Tortorelli, D.A.: Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MI, 2–4 September 1874–1882 (1998)

  13. Burger, M., Stainko, R.: Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45(4), 1447–1466 (2006)

    Article  MathSciNet  Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Book  Google Scholar 

  15. Clausen, A., Andreassen, E.: On filter boundary conditions in topology optimization. Struct. Multidiscip. Optim. 56(5), 1147–1155 (2017)

    Article  MathSciNet  Google Scholar 

  16. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser Boston Inc., Boston (1993)

  17. Dedè, L., Borden, M.J., Hughes, T.J.R.: Isogeometric analysis for topology optimization with a phase field model. Arch. Comput. Methods Eng. 19(3), 427–465 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ern, A., Guermond, J.-L.: Finite Elements II—Galerkin Approximation, Elliptic and Mixed PDEs. Texts in Applied Mathematics, vol. 73. Springer, Cham (2021)

  19. Garcke, H., Hüttl, P., Knopf, P.: Shape and topology optimization involving the eigenvalues of an elastic structure: a multi-phase-field approach. Adv. Nonlinear Anal. 11(1), 159–197 (2022)

    Article  MathSciNet  Google Scholar 

  20. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86(6), 765–781 (2011)

    Article  MathSciNet  Google Scholar 

  21. Marino, M., Auricchio, F., Reali, A., Rocca, E., Stefanelli, U.: Mixed variational formulations for structural topology optimization based on the phase-field approach. Struct. Multidiscip. Optim. 64, 2627–2652 (2021)

    Article  MathSciNet  Google Scholar 

  22. Modica, L., Mortola, S.: Un esempio di \(\Gamma ^{-}\)-convergenza. Boll. Un. Mat. Ital. B (5), 14, 285–299 (1977)

  23. Murat, F.: Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. (4), 112, 49–68 (1977)

  24. Shi, S., Zhou, P., Lü, Z.: A density-based topology optimization method using radial basis function and its design variable reduction. Struct. Multidisc. Optim. 64, 2149–2163 (2021)

    Article  MathSciNet  Google Scholar 

  25. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidisc. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  26. Strang, G.: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proceedings Symposium, University of Maryland, Baltimore, MD, 1972), pp. 689–710. Academic Press, New York (1972)

  27. Svanberg, K., Svärd, H.: Density filters for topology optimization based on the Pythagorean means. Struct. Multidiscip. Optim. 48(5), 859–875 (2013)

    Article  MathSciNet  Google Scholar 

  28. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229(7), 2697–2718 (2010)

    Article  MathSciNet  Google Scholar 

  29. Wadbro, E., Hägg, L.: On quasi-arithmetic mean based filters and their fast evaluation for large-scale topology optimization. Struct. Multidiscip. Optim. 52(5), 879–888 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wallin, M., Ivarsson, N., Amir, O., Tortorelli, D.: Consistent boundary conditions for PDE filter regularization in topology optimization. Struct. Multidiscip. Optim. 62(3), 1299–1311 (2020)

    Article  MathSciNet  Google Scholar 

  31. Wang, M.Y., Wang, S.: Bilateral filtering for structural topology optimization. Int. J. Numer. Methods Eng. 63(13), 1911–1938 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Funding

F. Auricchio was partially supported by the Italian Minister of University and Research through the project A BRIDGE TO THE FUTURE: Computational methods, innovative applications, experimental validations of new materials and technologies (No. 2017L7X3CS) within the PRIN 2017 program abd by Regione Lombardia, Regional Law No. 9/2020, Resolution No. 3776/2020. M. Marino was partially supported by the Italian Ministry of University and Research through the project COMETA within the Program for Young Researchers Rita Levi Montalcini (year 2017) and by Regione Lazio through the project BIOPMEAT (No. A0375-2020-36756) within the framework Progetti di Gruppi di Ricerca 2020 (POR FESR LAZIO 2014). I. Mazari is partially supported by the French ANR Project ANR-18-CE40-0013-SHAPO on Shape Optimization and by the Project Analysis and simulation of optimal shapes—application to life sciences of the Paris City Hall. U. Stefanelli is partially supported by the Austrian Science Fund (FWF) through projects F 65, W 1245, I 4354, I 5149, and P 32788, and by the OeAD-WTZ project CZ 01/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulisse Stefanelli.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auricchio, F., Marino, M., Mazari, I. et al. Analysis of a Combined Filtered/Phase-Field Approach to Topology Optimization in Elasticity. Appl Math Optim 89, 41 (2024). https://doi.org/10.1007/s00245-024-10104-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10104-x

Keywords

Navigation