Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chimeric nanobody-decorated liposomes by self-assembly

Abstract

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of immunoliposome preparation.
Fig. 2: Characterization of NB and engineered cNB.
Fig. 3: Characterization of biophysical properties of cNB-LPs.
Fig. 4: Tumour treatment in vitro and in vivo.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Additional information and unique biological materials can be requested from the corresponding author upon reasonable request. Custom code was not involved in this study.

References

  1. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu, Y., Castro Bravo, K. M. & Liu, J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 6, 78–94 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Mamot, C. et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 65, 11631–11638 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Alavi, M. & Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34, 20180032 (2019).

  7. Leserman, L. D., Machy, P. & Barbet, J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 293, 226–228 (1981).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol. Prog. 21, 205–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Y. R., Sefah, K., Liu, H. P., Wang, R. W. & Tan, W. H. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl Acad. Sci. USA 107, 5–10 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Liu, Y. N. et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol. Pharm. 17, 1276–1292 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys. Rep. 27, 101067 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, E. J., Lee, J. W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    Article  CAS  Google Scholar 

  13. Ma et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 44, 1240–1256 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Li, L. et al. Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angew. Chem. Int. Ed. Engl. 60, 2221–2231 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Finger, C., Escher, C. & Schneider, D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Signal 2, ra56 (2009).

    Article  PubMed  Google Scholar 

  18. Lāce, I., Cotroneo, E. R., Hesselbarth, N. & Simeth, N. A. Artificial peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion. J. Pept. Sci. 29, e3466 (2023).

    Article  PubMed  Google Scholar 

  19. Rahman, M. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid domain in uniform-size peptide vesicles for controlled release. J. Am. Chem. Soc. 140, 17956–17961 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Z., Moon, J. J. & Cheng, W. Quantitation and stability of protein conjugation on liposomes for controlled density of surface epitopes. Bioconjug. Chem. 29, 1251–1260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oliveira, S. et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J. Control. Release 145, 165–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. van der Meel, R. et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J. Control. Release 159, 281–289 (2012).

    Article  PubMed  Google Scholar 

  23. Li, N. et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv. 24, 1770–1781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. & Hosseini, H. R. M. Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells. Cell. Mol. Bioeng. 10, 263–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woll, S. et al. Sortagging of liposomes with a murine CD11b-specific VHH increases in vitro and in vivo targeting specificity of myeloid cells. Eur. J. Pharm. Biopharm. 134, 190–198 (2019).

    Article  PubMed  Google Scholar 

  26. Mesquita, B. S. et al. The impact of nanobody density on the targeting efficiency of PEGylated liposomes. Int. J. Mol. Sci. 23, 14974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishimura, T., Hirose, S., Sasaki, Y. & Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 142, 154–161 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Marsh, D. Thermodynamics of phospholipid self-assembly. Biophys. J. 102, 1079–1087 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Wan, Y. et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J. Phys. Chem. B 115, 13891–13896 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Grillo, I., Morfin, I. & Prevost, S. Structural characterization of pluronic micelles swollen with perfume molecules. Langmuir 34, 13395–13408 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Andersen, T. et al. Chitosan in mucoadhesive drug delivery: focus on local vaginal therapy. Mar. Drugs 13, 222–236 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Takikawa, M., Fujisawa, M., Yoshino, K. & Takeoka, S. Intracellular distribution of lipids and encapsulated model drugs from cationic liposomes with different uptake pathways. Int J. Nanomed. 15, 8401–8409 (2020).

    Article  CAS  Google Scholar 

  35. Lin, W. S. & Malmstadt, N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur. Biophys. J. 48, 549–558 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Haque, M. E., McIntosh, T. J. & Lentz, B. R. Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “Nature’s own” fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rahman, M. M., Abosheasha, M. A., Ito, Y. & Ueda, M. DNA-induced fusion between lipid domains of peptide–lipid hybrid vesicles. Chem. Commun. 58, 11799–11802 (2022).

    Article  CAS  Google Scholar 

  38. Dominguez, L., Foster, L., Straub, J. E. & Thirumalai, D. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc. Natl Acad. Sci. USA 113, E5281–E5287 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Wang, B. H. et al. Sequential intercellular delivery nanosystem for enhancing ROS-Induced antitumor therapy. Nano Lett. 19, 3505–3518 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Tarafdar, P. K., Chakraborty, H., Dennison, S. M. & Lentz, B. R. Phosphatidylserine inhibits and calcium promotes model membrane fusion. Biophys. J. 103, 1880–1889 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Lygina, A. S., Meyenberg, K., Jahn, R. & Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int Ed. 50, 8597–8601 (2011).

    Article  CAS  Google Scholar 

  42. Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. ChemBioChem 12, 1049–2011 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Kaiser, H. J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Kozlowska, D. et al. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin’s lymphoma (human Burkitt’s lymphoma). RSC Adv. 4, 18007–18016 (2014).

    Article  CAS  ADS  Google Scholar 

  45. Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric pressure between membrane-bound proteins opposes lipid phase separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Lomize, A. L., Lomize, M. A., Krolicki, S. R. & Pogozheva, I. D. Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res. 45, D250–D255 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jovcevska, I. et al. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS ONE 9, e113688 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  51. Hmila, I. et al. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 24, 3479–3489 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Farajpour, Z., Rahbarizadeh, F., Kazemi, B. & Ahmadvand, D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem. Biophys. Res. Commun. 446, 132–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Roovers, R. C. et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 129, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article  ADS  Google Scholar 

  55. Nguyen, H., Maier, J., Huang, H., Perrone, V. & Simmerling, C. Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J. Am. Chem. Soc. 136, 13959–13962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  ADS  Google Scholar 

  57. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. DeLano W. L. PyMOL molecular viewer: updates and refinements. Abstr. Pap. Am. Chem. S 238, (2009).

  59. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17, 6281–6291 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Et-Thakafy, O. et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic force spectroscopy. Langmuir 33, 5117–5126 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Custodio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Callister, W. D. & Rethwisch, D. G. Materials Science and Engineering: An Introduction Vol. 7 (Wiley, 2020).

  65. McQuarrie, D. A., Jachimowski, C. & Russell, M. Kinetics of small systems. II. J. Chem. Phys. 40, 2914–2921 (1964).

    Article  CAS  ADS  Google Scholar 

  66. Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Piper, J. W., Swerlick, R. A. & Zhu, C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall 0.2. Couette flow. Chem. Eng. Sci. 22, 637–651 (1967).

Download references

Acknowledgements

Y.W. thanks the support from National Cancer Institute R01CA230339 and R37CA255948. Y.L. is supported by NSF 2303648. The opinions, findings, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of any of the funding agencies. L.W. thanks the support from Jiangsu Provincial Medical Youth Talent QNRC2016054 and the Leading-Edge Technology Program of Jiangsu Natural Science Foundation BK20212012. S.H.C. thanks the support from office of the Direct, National Institutes of Health S10OD026822-01.

Author information

Authors and Affiliations

Authors

Contributions

The project was designed by Y.W., Lixue W. and L.P.L. M.R., J.W., G.W., Z.S., Y.L., Y.C., J.M., Y.Y., Lefei W., S.W., J.T., J.L., T.Z., C.Z. and S.H.C. performed the experiments, collected and analysed the data. All authors contributed to the writing of the paper, discussed the results and implications, and edited the paper at all stages.

Corresponding authors

Correspondence to Lixue Wang, Luke P. Lee or Yuan Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Bruno Fonseca-Santos Ali Makky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22.

Reporting Summary

Supplementary Data 1

Source data for all plotted figures and unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Wang, J., Wang, G. et al. Chimeric nanobody-decorated liposomes by self-assembly. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01620-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research