Skip to main content
Log in

Large-scale longitudinal distortions of Marangoni wave patterns in the non-isothermal liquid layer covered by surfactant

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the present paper, we consider single traveling waves (STW) generated by the oscillatory instability of Marangoni convection in the thin non-isothermal liquid layer with deformable free surface. The layer is covered by insoluble surfactant that plays an active role in the pattern selection together with inhomogeneity of temperature along the interface and surface deformability. Using the weakly nonlinear analysis we derived the modified complex Ginzburg–Landau equation describing the large-scale distortions of STWs near the bifurcation point. Linear stability analysis reveals existence of two modulational modes: one is for the amplitude and another one for the phase (Benjamin–Feir). Numerically, we found that STWs are stable with respect to longitudinal modulations in the case without surfactant. In the presence of the insoluble surfactant both modulational modes are found. The stability maps for different values of the surfactant concentration are plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. J.P. Gollub, J.S. Langer, Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, S396–S403 (1999). https://doi.org/10.1103/RevModPhys.71.S396

    Article  Google Scholar 

  2. L. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, Berlin, 2006)

    Google Scholar 

  3. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  4. Ph. Ball, Patterns in Nature: Why the Natural World looks Way It Does (The University of Chicago Press, Chicago, 2016)

    Book  Google Scholar 

  5. M. Maillard, L. Motte, A.T. Ngo, M.P. Pileni, Rings and hexagons of nanocrystals: a Marangoni effect. J. Phys. Chem. B 104, 11871–11877 (2000). https://doi.org/10.1021/jp002605n

    Article  CAS  Google Scholar 

  6. K. Eckert, M. Acker, R. Tadmouri, V. Pimienta, Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics. Chaos 22, 037112 (2012). https://doi.org/10.1063/1.4742844

    Article  CAS  PubMed  ADS  Google Scholar 

  7. H. Uchiyama, T. Matsui, H. Kozuka, Spontaneous pattern formation induced by Bénard–Marangoni convection for sol-gel-derived titania dip-coating films: effect of co-solvents with a high surface tension and low volatility. Langmuir 31, 12497–504 (2015). https://doi.org/10.1021/acs.langmuir.5b02929

    Article  CAS  PubMed  Google Scholar 

  8. S. Shklyaev, A. Nepomnyashchy, Longwave Instabilities and Patterns in Fluids (Birkhaüser, New York, 2017)

    Book  Google Scholar 

  9. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Red. Mod. Phys. 65, 851–1112 (1993). https://doi.org/10.1103/RevModPhys.65.851

    Article  CAS  ADS  Google Scholar 

  10. S. Shklyaev, A.A. Alabuzhev, M. Khenner, Long-wave Marangoni convection in a thin film heated from below. Phys. Rev. E 85, 016328 (2012). https://doi.org/10.1103/PhysRevE.85.016328

    Article  CAS  ADS  Google Scholar 

  11. O. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H. Richter, L. Kramer, The Eckhaus instability for traveling waves. Physica D 55, 269–286 (1992). https://doi.org/10.1016/0167-2789(92)90060-Z

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Dangelmayr, I. Oprea, Modulational stability of traveling waves in 2D anisotropic systems. J. Nonlinear Sci. 18, 1–56 (2008). https://doi.org/10.1007/s00332-007-9009-3

    Article  MathSciNet  ADS  Google Scholar 

  13. A.B. Mikishev, A.A. Nepomnyashchy, Patterns and their large-scale distortions in Marangoni convection with insoluble surfactant. Fluids 6, 282 (2021). https://doi.org/10.3390/fluids6080282

    Article  CAS  ADS  Google Scholar 

  14. A.B. Mikishev, A.A. Nepomnyashchy, Marangoni patterns in a non-isothermal liquid with deformable interface covered by insoluble surfactant. Colloids Interfaces 6, 53 (2022). https://doi.org/10.3390/colloids6040053

    Article  Google Scholar 

  15. A.C. Newell, J.A. Whitehead, Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969). https://doi.org/10.1017/S0022112069000176

    Article  MathSciNet  ADS  Google Scholar 

  16. L.A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203–224 (1969). https://doi.org/10.1017/S0022112069000127

    Article  ADS  Google Scholar 

  17. A. Samoilova, A.A. Nepomnyashchy, Longitudinal modulation of Marangoni wave patterns in thin heated from below: instabilities and control. Front. Appl. Math Stat. 7, 697332 (2021). https://doi.org/10.3389/fams.2021.697332

    Article  Google Scholar 

  18. A.B. Mikishev, A.A. Nepomnyashchy, Weakly nonlinear analysis of long-wave Marangoni convection in a liquid layer covered by insoluble surfactant. Phys. Rev. Fluids 4, 094002 (2019). https://doi.org/10.1103/PhysRevFluids.4.094002

    Article  ADS  Google Scholar 

  19. A.B. Mikishev, A.A. Nepomnyashchy, Amplitude equations for large-scale Marangoni convection in a liquid layer with insoluble surfactant on deformable free surface. Microgravity Sci. Technol. 23(Sup.1), S59–S63 (2011). https://doi.org/10.1007/s12217-011-9271-8

    Article  ADS  Google Scholar 

  20. C.D. Eggleton, Y.P. Pawar, K.J. Stebe, Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 79–99 (1999). https://doi.org/10.1017/S0022112098004054

    Article  CAS  ADS  Google Scholar 

  21. T. Yamada, Y. Kuramoto, A reduced model showing chemical turbulence. Prog. Theor. Phys. 56, 681–683 (1976). https://doi.org/10.1143/PTP.56.681

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

A.N. acknowledges financial support from the Israel Science Foundation (Grant N. 843/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Mikishev.

Appendix A

Appendix A

$$\begin{aligned}{} & {} \omega _1={\mathcal {D}}_{11}/{\mathcal {D}}_{10} \end{aligned}$$
(A1)
$$\begin{aligned} {\mathcal {D}}_{11}&=-i k \{3 K_c^2 M_0 (K_c^2 L+i \omega _0) [24 \alpha _1+3 G +6 K_c^2 S+4 (\alpha _1-1) M_o+4 \alpha _2 N] \\ & \quad -2 (K_c^2 (M_o+6)+6 (\beta +i \omega _0)) [G K_c^2 (4 L+N) +4 i G \omega _0+2 K_c^4 S (4 L+N) \\ & \quad +K_c^2 (6 (\alpha _1-1) L M_o+8 i S \omega _0) +6 i \omega _0 ((\alpha _1-1) M_o+\alpha _2 N)] +2 K_c^4 M_o N (G+2 K_c^2 S-6 \alpha _2 L)\}, \\{} & {} {\mathcal {D}}_{10}=6 \{(\alpha _2-2) K_c^4 M_o N -6 \alpha _1 K_c^2 M_o (K_c^2 L+i \omega _0)+(K_c^2 (M_o+6)\\ & \quad +6 (\beta +i \omega _0)) (K_c^2 (2 (L+N)-\alpha _2 N)+2 i \omega _0)\}. \\ a_{22} &=\frac{{\mathcal {D}}_{21}+\omega _c{\mathcal {D}}_{22}+\omega _c^2{\mathcal {D}}_{23}}{{\mathcal {D}}_{00} +{\mathcal {D}}_{01}\omega _c+{\mathcal {D}}_{02}\omega _c^2+36i\omega _c^3}, \end{aligned}$$
(A2)
$$\begin{aligned} {\mathcal {D}}_{23}&=-18 k^2 [2 G+2 (K_c^2 S+\alpha _2 N)+(\alpha _1-2) M_o], \\ {\mathcal {D}}_{22}&=3 i K_c^2 [6 \beta G+2 G K_c^2 (12 L-\alpha _1 M_o-3 \alpha _2 N +6 N+12)+2 K_c^4 S (12 L-\alpha _1 M_o-3 \alpha _2 N+6 N \\ & \quad +12)+K_c^2 (3 M_o (4 \alpha _1 (L+N+1)-8 L-4 N-7) +12 \alpha _2 N (2 L-\alpha _2 N+N+2)+((4-3 \alpha _1) \alpha _1-1) \\{} & {} \quad \times M_o^2+(13-15 \alpha _1) \alpha _2 M_o N+6 \beta S) +6 \beta ((\alpha _1-1) M_o+\alpha _2 N)], \\ {\mathcal {D}}_{21}&=3 K_c^4 [-4 G K_c^2 (L (\alpha _1 M_o-12) +3 (\alpha _2-2) N)+12 \beta G L-3 (\alpha _2-2) \beta G N \\{} & {} \quad -4 K_c^4 S (L (\alpha _1 M_o-12)+3 (\alpha _2-2) N) -2 K_c^2 L M_o ((\alpha _1-1) (3 \alpha _1-1) M_o+3 \alpha _1 (\alpha _2 N-4) \\{} & {} \quad -\alpha _2 N+21)+48 \alpha _2 K_c^2 L N+12 \beta K_c^2 L S -24 (\alpha _2-1) K_c^2 N ((\alpha _1-1) M_o+\alpha _2 N) -3 (\alpha _2-2) \beta K_c^2 N S \\{} & {} \quad +6 \beta (2 L-\alpha _2 N+N) ((\alpha _1-1)M_o+\alpha _2 N)], \\{\mathcal {D}}_{00}&=2 K_c^6 [G L (M_o-48)-12 G N+4 K_c^2 S (L (M_o-48)-12N) +72 L M_o]-6 \beta K_c^4 (4 L+N)(G+4K_c^2 S), \\ {\mathcal {D}}_{01}&=-i K_c^2 [K_c^2 (G (48 L-M_o+12 N+48) +4 K_c^2 S (48 L-M_o+12 N+48)-48 L (M_o-3) \\ & \quad -72 (M_o-2 N))+12 \beta (G+4 K_c^2 S+3 (L+N))], \\ {\mathcal {D}}_{02}&=24K_c^2(3+G+3L-M_{osc}+3N+4K_c^2S)+18\beta , \\ b_{22}&=\frac{{\mathcal {D}}_{31}+{\mathcal {D}}_{32}\omega _c+{\mathcal {D}}_{33}\omega _c^2-36i\alpha _1\omega _c^3}{2({\mathcal {D}}_{00}+{\mathcal {D}}_{01}\omega _c+{\mathcal {D}}_{02}\omega _c^2+36i\omega _c^3)}, \end{aligned}$$
(A3)
$$\begin{aligned} {\mathcal {D}}_{31}&=K_c^4 [G^2 K_c^2 (4 (4 \alpha _1-1) L+N (4 \alpha _1+\alpha _2-2)) +G (5 K_c^4 S (4 (4 \alpha _1-1) L+N (4 \alpha _1+\alpha _2-2)) \\ & \quad +2 K_c^2 (6 L (8 \alpha _1+\alpha _1 (2 \alpha _1-5) M_o+M_o +2 \alpha _1 \alpha _2 N-\alpha _2 N-2)+N (12 \alpha _1 \\{} & {} \quad +(3 \alpha _1+\alpha _2-2) ((\alpha _1-1)M_o+\alpha _2 N)-3)) +18 \beta (4 L-(\alpha _2-2) N))+4 K_c^6 S^2 (4 (4 \alpha _1-1) L \\ &\quad +N (4 \alpha _1+\alpha _2-2))+8 K_c^4 S (3 L (16 \alpha _1 +(\alpha _1 (4 \alpha _1-7)+2) M_o+4 \alpha _1 \alpha _2 N-2 \alpha _2 N-4) \\ & \quad +N (12 \alpha _1+(3 \alpha _1+\alpha _2-2) ((\alpha _1-1) M_o+\alpha _2 N)-3)) +6 K_c^2 (-2 L M_o (12 \alpha _1+3 \alpha _1^2 M_o \\ & \quad -4 \alpha _1 M_o+M_o+(3 \alpha _1-1) \alpha _2 N-3)+12 \beta L S-3 (\alpha _2-2) \beta N S) \\ &\quad +36 \beta (2 L-\alpha _2 N+N) ((\alpha _1-1) M_o+\alpha _2 N)], \\ {\mathcal {D}}_{32}&=2 i K_c^2 [(4 \alpha _1-1) G^2 K_c^2+18 \beta G +5 (4 \alpha _1-1) G K_c^4 S+3 G K_c^2 (8 \alpha _1+4 (3 \alpha _1+2) L \\& \quad +\alpha _1 (2 \alpha _1-5) M_o+M_o+N (2 \alpha _1 (\alpha _2+3)-3 \alpha _2+4)-2) +4 (4 \alpha _1-1) K_c^6 S^2 \\ & \quad +12 (9 \alpha _1+2) K_c^4 L S+6 K_c^4 S (16 \alpha _1+(\alpha _1 (4 \alpha _ 1-7)+2) M_o +N (4 \alpha _1 \alpha _2+6 \alpha _1-3 \alpha _2+2)-4) \\ & \quad +3 K_c^2 (6 L (4 \alpha _1+((\alpha _1-2) \alpha _1-1) M_o +(\alpha _1+1) \alpha _2 N-1)+((4-3 \alpha _1) \alpha _1-1) M_o^2 \\ & \quad +M_o (-12 \alpha _1+N (\alpha _1 (6 \alpha _1-7 \alpha _2-4) +5 \alpha _2-2)+3)+2 N (3 \alpha _1 (\alpha _2 N+4) \\ & \quad +\alpha _2 (1-2 \alpha _2) N-3)+6 \beta S)+18 \beta ((\alpha _1-1) M_o+\alpha _2 N)], \\ {\mathcal {D}}_{33}&=6 K_c^2 [-2 (3 \alpha _1+2) G-2 (9 \alpha _1+2) K_c^2 S -3 (4 \alpha _1 (L+N+1)+((\alpha _1-2) \alpha _1-1) M_o \\ & \quad +(\alpha _1+1) \alpha _2 N)+3], \\ c_{22}&=\frac{{\mathcal {D}}_{41}+{\mathcal {D}}_{42}\omega _c+{\mathcal {D}}_{43}\omega _c^2}{2({\mathcal {D}}_{00}+{\mathcal {D}}_{01}\omega _c+{\mathcal {D}}_{02}\omega _c^2+36i\omega _c^3)}, \end{aligned}$$
(A4)
$$\begin{aligned} {\mathcal {D}}_{41}&=-K_c^4 (-12 (\alpha _2-1) \beta G^2 +G^2 K_c^2 (M_o (4 \alpha _1+\alpha _2-2)-48 (\alpha _2-1))\\ & \quad +5 G K_c^4 S (M_o (4 \alpha _1+\alpha _2-2)-48 (\alpha _2-1))+2 (\alpha _1-1) G K_c^2 M_o^2 (3 \alpha _1\\ & \quad +\alpha _2-2)+2 G K_c^2 M_o (3 \alpha _1 (\alpha _2 (N-16)+12) +\alpha _2 ((\alpha _2-2) N+84)-99)+48 \alpha _2 (1-2 \alpha _2) G K_c^2 N\\ & \quad -60 (\alpha _2-1) \beta G K_c^2 S +12 (1-2 \alpha _2) \beta G ((\alpha _1-1) M_o+\alpha _2 N)+4 K_c^6 S^2 (M_o (4 \alpha _1+\alpha _2-2)-48 (\alpha _2-1))\\ & \quad +8 (\alpha _1-1) K_c^4 M_o^2 S (3 \alpha _1+\alpha _2-2) +8 K_c^4 M_o S (3 \alpha _1 (\alpha _2 (N-16)+12)+\alpha _2 ((\alpha _2-2) N+57)-45)\\ & \quad +192 \alpha _2 (1-2 \alpha _2) K_c^4 N S -48 (\alpha _2-1) \beta K_c^4 S^2+48 K_c^2 ((\alpha _1-1) M_o\\ & \quad +\alpha _2 N) (3 (\alpha _2-1) M_o+(1-2 \alpha _2) \beta S)),\\ {\mathcal {D}}_{42}&=6 i K_c^2 [4 (\alpha _2-1) G^2 K_c^2+3 (\alpha _2+2) \beta G +2 G K_c^2 (2 (5 (\alpha _2-1) K_c^2 S+\alpha _2 (2 \alpha _2 N-N+3)+6)\\ & \quad +M_o (\alpha _1 (4 \alpha _2-5)-6 \alpha _2+6))+16 (\alpha _2-1) K_c^6 S^2 +4 K_c^4 S (M_o (8 \alpha _1 \alpha _2-7 \alpha _1-9 \alpha _2+6)\\ & \quad +\alpha _2 (8 \alpha _2 N-4 N+3)+6)+K_c^2 (-2 (\alpha _1-1) M_o^2 (3 \alpha _1 +4 \alpha _2-5)-2 M_o (\alpha _2 (3 \alpha _1 (N-4)-5 N+12)\\ & \quad +4 \alpha _2^2 N+9)+24 \alpha _2 (\alpha _2+1) N+3 (\alpha _2+2) \beta S) +6 (\alpha _2+1) \beta ((\alpha _1-1) M_o+\alpha _2 N)], \\ {\mathcal {D}}_{43}&=-36K_c^2[2N\alpha _2(\alpha _2+1) +(G+K_c^2S)(\alpha _2+2)+2M_{o}(\alpha _2(\alpha _1-1)-1)]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikishev, A.B., Nepomnyashchy, A.A. Large-scale longitudinal distortions of Marangoni wave patterns in the non-isothermal liquid layer covered by surfactant. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01118-1

Navigation