Skip to main content
Log in

Using the Landsat-8 Data Set and Shuttle Radar Topography Mission Digital Terrain Model for Gold–Polymetallic Mineralization Prediction on the Territory of the Central Part of the Malouralskaya Zone, the Polar Urals

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

For the first time, we apply a new approach to processing earth remote sensing data obtained by the Landsat-8 spacecraft to the central part of the Maloyralskaya zone, the Polar Urals. It consists of integrating metasomatic alteration distribution maps and lineament density patterns that were created based on the results of statistical processing of remote sensing data and the Shuttle Radar Topography Mission (SRTM) digital elevation model. This study is aimed at identifying morphological features and patterns and features of the deep structure and at identifying areas promising for the gold-polymetallic type of mineralization in the studied area. As a result of the study, it is established that areas promising for the gold–polymetallic type of mineralization in the central part of the Maloyralskaya zone are localized along transregional fault zones that intersect favorable horizons and structures and control ore mineralization and within large morphostructures complicated by radial faults of the first-order NE and NW direction with a length of up to 30 km, as well as areas with increased indices of iron oxides (II and III) and, less often, hydroxide (Al–OH and Mg–OH) and carbonate-containing minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Abdullah, A., Akhir, J.M., and Abdullah, I., Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran–Sungai Lembing Area, Malaysia, Electr. J. Geotech. Eng., 2010, vol. 15, no. 6, pp. 949–958. https://doi.org/10.1039/CS9962500401

    Article  Google Scholar 

  2. Alonso-Contes, C.A., Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain: Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico, Master’s Thesis, Michigan Technological University, 2011.

  3. Amer, R., Kusky, T., and El Mezayen, A., Remote sensing detection of gold related alteration zones of Um Rus area, central Eastern Desert of Egypt, Adv. Space Res., 2012, vol. 49, pp. 121–134.

    Article  CAS  ADS  Google Scholar 

  4. Cheng, Q., Jing, L., and Panahi, A., Principal component analysis with optimum order sample correlation coefficient for image enhancement, Int. J. Remote Sens., 2006, vol. 27, no. 16, pp. 3387–3401. https://doi.org/10.1080/01431160600606882

    Article  Google Scholar 

  5. Chernyaev, E.V., Chernyaeva, E.I., and Sedel’nikova, A.Yu., Geology of the Novogodnee-Monto gold-skarn deposit (Polar Urals), in Skarny, ikh genezis i rudonosnost' (Fe, Cu, Au, W, Sn, …). Mat. konf. XI Chtenii A.N. Zavaritskogo (Genesis and Ore Content of Skarns (Fe, Cu, Au, W, Sn, …): Proceedings of the XI Conf. A. N. Zavaritskii Readings), Ekaterinburg: IGiG UrO RAN, 2005, pp. 131–137.

  6. Ekneligoda, T.C. and Henkel, H., Interactive spatial analysis of lineaments, Comput. Geosci., 2010, vol. 36, no. 8, pp. 1081–1090.

    Article  ADS  Google Scholar 

  7. Estrada, S., Henjes-Kunst, F., Burgath, K.P., et al., Insights into the magmatic and geotectonic history of the Voikar Massif, Polar Urals, Z. Dtsch. Geol. Ges., 2012, vol. 163, no. 1, pp. 9–41. https://doi.org/10.1127/1860-1804/2012/0163-0009

    Article  Google Scholar 

  8. Farr, T.G., Rosen, P.A., Caro, E., et al., The shuttle radar topography mission, Rev. Geophys., 2007, vol. 45, no. 2, p. RG2004. https://doi.org/10.1029/2005RG000183

    Article  ADS  Google Scholar 

  9. Gornyi, V.I., Kritsuk, S.G., Latypov, I.Sh., and Tronin, A.A., Features of the mineralogical zoning of ore-magmatic systems containing quartz-vein gold deposits (based on satellite spectrometry), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 3, pp. 140–156.

    Google Scholar 

  10. Gupta, R.P., Remote Sensing Geology, Berlin: Springer, 2017, pp. 180–190, 235–240, and 332–336.

  11. Hubbard, B.E., Mack, T.J., and Thompson, A.L., Lineament analysis of mineral areas of interest in Afghanistan, USGS Open-File Report, Reston, Va.: U.S. Geological Survey, 2012. http://pubs.usgs.gov/of/2012/1048.

    Book  Google Scholar 

  12. Ivanova, Yu.N. and Nafigin, I.O., Development of an approach for constructing a prognostic map of the probabilistic distribution of high-permeability rock zones for the polymetallic mineralization type according to Landsat-8 spacecraft data, Issled. Zemli Kosmosa, 2023, no. 1. https://doi.org/10.31857/S0205961423010062

  13. Ivanova, Yu.N. and Tyukova, E.E., Decay structures in the Amfibolitovoe (the polar Urals) ore occurrence, in II Nauchn. Konf. “Geologiya na okraine kontinentov” (The II Scientific Conference “Continental Margin Geology,”) 2022, pp. 143–145.

  14. Ivanova, Yu.N., Vykhristenko, R.I., and Vikent’ev, I.V., Structural control of gold mineralization in the central part of the Malouralskii volcano-plutonic belt (the polar Urals) from multispectral images of the Landsat 8 spacecraft, Issled. Zemli Kosmosa, 2020, no. 4, pp. 51–62.

  15. Jensen, J.R., Introductory Digital Image Processing: A Remote Sensing Perspective, Upper Saddle River, N.J.: Prentice Hall, 1996, pp. 276–287 and 296–301.

  16. Jolliffe, I.T., Principal Component Analysis, New York: Springer, 2002.

    Google Scholar 

  17. Kosmicheskaya informatsiya v geologii (Satellite Data in Geology), Peive, A.V, Ed., Moscow: Nauka, 1983.

  18. Kremenetskii, A.A., Obosnovanie poiskovykh i poiskovo-revizionnykh rabot na rudnoe zoloto v predelakh Manyukuyu-Varchatinskogo rudnogo uzla (rudoproyavleniya: Polyarnaya Nadezhda, Geokhimicheskoe i Blagodarnoe). Masshtab 1 : 10 000 (Justification of Prospecting and Checking Activities for Gold Ore within the Manyukuyu-Varchatinsky Ore Cluster (the Polyarnaya Nadezhda, Geokhimicheskoe, and Blagodarnoe Ore Occurrences), Scale 1 : 10 000), Moscow: IMGRE, 2012.

  19. Kumar, C., Chatterjee, S., and Oommen, T., Mapping hydrothermal alteration minerals using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski gold deposit area, India, Int. J. Remote Sens., 2020, vol. 41, no. 2, pp. 794–812. https://doi.org/10.1080/01431161.2019.1648906

    Article  Google Scholar 

  20. Loughlin, W.P., Principal component analysis for alteration mapping, Photogramm. Eng. Remote Sens., 1991, vol. 57, pp. 1163–1169.

    Google Scholar 

  21. Lyapustin, A., Martonchik, J., Wang, Y., et al., Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables, J. Geophys. Res.: Atmos., 2003, no. D17, vol. 108, no. D17. https://doi.org/10.1029/2002JD002903

  22. Masoud, A. and Koike, K., Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt, J. Afr. Earth Sci., 2006, vol. 45, pp. 467–477.

    Article  ADS  Google Scholar 

  23. Mather, P.M., Computer Processing of Remotely Sensed Images: An Introduction, Chichester: UK: John Wiley and Sons, 1999.

    Google Scholar 

  24. Maurer, T., How to pan-sharpen images using the gram-Schmidt pan-sharpen method: A recipe, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop, Hannover, Germany, 2013, pp. 239–244.

  25. Sadek,·M.S., El-Kalioubi, B.A.,·Ali-Bik, M.W., et al., Utilizing Landsat-8 and ASTER data in geologic mapping of hyper-arid mountainous region: Case of Gabal Batoga area, South Eastern Desert of Egypt, Environ. Earth Sci., 2020, vol. 79, p. 101. https://doi.org/10.1007/s12665-020-8845-4

  26. Pour, A.B., Park, Y., Park, T.S., et al., Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica, Polar Sci., 2018, no. 16, pp. 23–46.

  27. Pour, A.B., Zoheir, B., Pradhan, B., et al., Editorial for the special issue: Multispectral and hyperspectral remote sing data for mineral exploration and environmental monitoring of mined areas, Remote Sens., 2021, vol. 13, no. 3, p. 519. https://doi.org/10.3390/rs13030519

    Article  ADS  Google Scholar 

  28. Remizov, D.N., Shishkin, M.A., Grigor’ev, S.I., Stepunin, A.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000 (2-e izd., tsif.). Seriya Polyarno-Ural’skaya. List Q-41-XVI (g. Khord’’yus). Ob’’yas. zap. (State Geological Map of the Russian Federation, Scale 1 : 200 000 (2nd Ed., Dig.), Ser. Polar Urals, Sheet Q-41-XVI (Khord’’yus), Explanatory Notice), St. Petersburg: VSEGEI, 2014.

  29. Roy, D.P., Wulder, M., Lovelandet, T.R., et al., Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ., 2014, vol. 145, pp. 154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  ADS  Google Scholar 

  30. Shishkin, V.A., Astapov, A.P., Kabatovi, N.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 100 000 (3-e pokol.). Ural’skaya Seriya. List Q-41 (Vorkuta). Ob’’yasn. zap. (State Geological Map of the Russian Federation, Scale 1 : 1 000 000 (Third Generation), Ser. Urals, Sheet Q-41: Vorkuta, Explanatory Note), St. Petersburg: VSEGEI, 2007.

  31. Singh, A.K. and Mondal, G.C., Remote sensing for mineral exploration, in Geological Methods in Mineral Exploration and Mining, Springer, 2016, pp. 139–185. https://doi.org/10.1007/978-3-319-39292-7_7.

  32. Sobolev, I.D., Soboleva, A.A., and Udoratina, O.V., et al., Devonian island-arc magmatism of the Voikar zone in the Polar Urals, Geotectonics, 2018, vol. 52, no. 5, pp. 531–563.

    Article  CAS  ADS  Google Scholar 

  33. Teillet, P.M., et al., Radiometric normalization of surface reflectance data in the visible and near-infrared domains from EO-1 Hyperion, IEEE Trans. Geosci. Remote Sens., 1982, no. 3, pp. 354–366.

  34. Thannoun, R.G., Automatic extraction and geospatial analysis of lineaments and their tectonic significance in some areas of northern Iraq using remote sensing techniques and GIS, Int. J. Enhanced Res. Sci. Technol. Eng., 2013, vol. 2, no. 2. https://doi.org/10.13140/RG.2.2.20851.99363

  35. Verdiansyah, O., Aplikasi lineament density analysis untuk membatasi pola kaldera purba godean (Lineament density analysis to limit the ancient Godean caldera pattern), J. Teknol. Technosci., 2017, vol. 9, no. 2.

  36. Verdiansyah, O., A desktop study to determine mineralization using lineament density analysis at Kulon Progo Mountains, Yogyakarta and Central Java Province, Indonesia, Indones. J. Geogr., 2019, vol. 51, no. 1, pp. 31–41. https://doi.org/10.22146/ijg.37442

    Article  Google Scholar 

  37. Vikentyev, I.V., Mansurov, R.Kh., Ivanova, Y.N., Tyukova, E.E., et al., Porphyry-style Petropavlovskoe gold deposit, the Polar Urals: Geological position, mineralogy, and formation conditions, Geol. Ore Deposits, 2017, vol. 59, no. 6, pp. 482–520. https://doi.org/10.22146/ijg.37442

    Article  ADS  Google Scholar 

  38. Wilson, J.P. and Gallant, J.C., Terrain Analysis: Principles and Applications, John Wiley and Sons, 2000.

    Google Scholar 

  39. Zhang, Y., et al., Comparison of four atmospheric correction algorithms for Landsat-8 OLI imagery in varying landscapes, Remote Sens., 2017, vol. 9, no. 3, p. 233. https://doi.org/10.3390/rs9030233

    Article  ADS  Google Scholar 

  40. Zyleva, L.I., Konovalov, A.L., Kazak, A.P., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (3-e pokolenie). Seriya Zapadno-Sibirskaya. List Q-42 – Salekhard: Ob’’yasn. zap. (State Geological Map of the Russian Federation, Scale 1 : 1 000 000 (3rd Generation), Ser. South Siberia, Sheet Q-42 – Salekhard, Explanatory Notice), St. Petersburg: VSEGEI, 2014.

Download references

Funding

This work was supported by the State Task of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Ivanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, Y.N., Nafigin, I.O. Using the Landsat-8 Data Set and Shuttle Radar Topography Mission Digital Terrain Model for Gold–Polymetallic Mineralization Prediction on the Territory of the Central Part of the Malouralskaya Zone, the Polar Urals. Izv. Atmos. Ocean. Phys. 59, 1397–1408 (2023). https://doi.org/10.1134/S0001433823120125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120125

Keywords:

Navigation