Skip to main content
Log in

Anomalies of Thermal Fields Revealed by Satellite Data during the Preparation and Occurrence of Strong Earthquakes in the Region of the Baikal Rift Zone in 2008–2022

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Long-term changes in thermal fields have been studied before and during strong earthquakes with magnitudes from 5.1 to 5.6 that occurred in the region of the Baikal rift zone in 2008–2022. Satellite data are used for these studies. For analysis we use the values of land surface temperature, temperature of the near-surface layer of the atmosphere, outgoing longwave radiation (OLR), and relative humidity (RH) recorded using the AIRS instrument mounted on the Aqua satellite. During the periods of preparation and occurrence of these seismic events, anomalous variations in the parameters of thermal fields registered with satellite are revealed. They exceed the average long-term values: for land surface temperature and temperature of the near-surface layer of the atmosphere by 5–10%, for OLR by 11–15%, and for RH by 6–10%. A strong negative correlation is found between changes in the temperature of the near-surface layer of the atmosphere and RH (correlation coefficient of –0.75), as well as antiphase oscillations between the values of the OLR and RH. The results can be used for studies of the precursor variability of thermal fields during monitoring of seismic hazard zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Akhoondzadeh, M. and Marchetti, D., Study of the preparation phase of Turkey’s powerful earthquake (6 February 2023) by a geophysical multiparametric fuzzy inference system, Remote Sens., 2023, vol. 15, p. 2224. https://doi.org/10.3390/rs15092224

    Article  ADS  Google Scholar 

  2. Akopian, S.Ts., Bondur, V.G., and Rogozhin, E.A., Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 32–51. https://doi.org/10.1134/S1069351317010025

    Article  Google Scholar 

  3. Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M.T., Braitenberg, C., and Gurbuz, G., Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey, earthquake sequence in the East Anatolian Fault Zone, Seismica, 2023, vol. 2, no. 3. https://doi.org/10.26443/seismica.v2i3.502

  4. Bondur, V.G. and Voronova, O.S., Study of thermal fields before strong earthquakes in Turkey on March 8, 2010 (M = 6.1), and January 24, 2020 (M = 6.7), Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 991–1002. https://doi.org/10.1134/S0001433821090425

    Article  Google Scholar 

  5. Bondur, V.G. and Voronova, O.S., Detection from space of anomalous variations in thermal fields during seismic events in the Northern Caucasus in 2017–2022, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 12, pp. 1546–1556. https://doi.org/10.1134/S0001433822120064

    Article  Google Scholar 

  6. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl. Earth. Sci., 2007, vol. 414, no. 1, pp. 666–669.

    Article  ADS  CAS  Google Scholar 

  7. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: The example of Southern California, Dokl. Earth. Sci., 2010, vol. 430, no. 3, pp. 147–150.

    Article  ADS  CAS  Google Scholar 

  8. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv., Phys. Solid Earth, 2016a, vol. 52, no. 1, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  9. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large-scale interaction of seismically active tectonic provinces: The example of Southern California, Dokl. Earth Sci., 2016b, vol. 466, no. 2, pp. 183–186. https://doi.org/10.1134/S1028334X16020100

    Article  ADS  CAS  Google Scholar 

  10. Bondur, V.G., Chimitdorzhiev, T.N., Tubanov, Ts.A., Dmitriev, A.V., and Dagurov, P.N., Analysis of the block-fault structure dynamics in the area of earthquakes in 2008 and 2020 near southern Lake Baikal by the methods of satellite radiointerferometry, Dokl. Earth Sci., 2021, vol. 499, no. 2, pp. 648–653. https://doi.org/10.1134/S1028334X21080031

    Article  CAS  Google Scholar 

  11. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Combined analysis of anomalous variations in various geophysical fields during preparation of the M5.6 earthquake near Lake Baikal on September 22, 2020, based on satellite data, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 12, pp. 1532–1545. https://doi.org/10.1134/S0001433822120052

    Article  Google Scholar 

  12. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., Voronova, O.S., Gaponova, M.V., Feoktistova, N.V., and Zima, A.L., Satellite registration of anomalies of various geophysical fields during the preparation of destructive earthquakes in Turkey in February 2023, Izv., Atmos. Ocean. Phys., 2023, vol. 59, no. 9, pp. 1009–1027. https://doi.org/10.31857/S0205961423340018

  13. Buslov, M.M., Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous–Cenozoic: The effect of the far-range impact of the Mongolo–Okhotsk and Indo–Eurasian collisions, Russ. Geol. Geophys., 2012, vol. 53, pp. 955–962. https://doi.org/10.1016/j.rgg.2012.07.010

    Article  ADS  Google Scholar 

  14. Chen, Y.-I., Huang, C.-S., and Liu, J.-Y., Statistical evidences of seismo-ionospheric precursors applying Receiver Operating Characteristic (ROC) curve on the GPS total electron content in China, J. Asian Earth Sci., 2015, vol. 114, pp. 393–402. https://doi.org/10.1016/j.jseaes.2015.05.028

    Article  ADS  Google Scholar 

  15. De Santis, A., Marchetti, D., Pavón-Carrasco, F.J., Cianchini, G., Perrone, L., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S.A., Carbone, M., et al., Precursory worldwide signatures of earthquake occurrences on Swarm satellite data, Sci. Rep., 2019, vol. 9, p. 20287. https://doi.org/10.3390/atmos10070371

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elshin, O. and Tronin, A., Global Earthquake Prediction Systems, Open J. Earthquake Res., 2020, vol. 9, pp. 170–180. https://doi.org/10.4236/ojer.2020.92010

    Article  CAS  Google Scholar 

  17. Gaponova, E.V., Zverev, A.T., and Tsidilina, M.N., Detecting lineament system anomalies during strong 6.4 and 7.1 earthquakes in California from satellite imagery, Izv., Atmos. Ocean. Phys., 2019, vol. 56, no. 9, pp. 1062–1071.

    Article  Google Scholar 

  18. Genzano, N., Filizzola, C., Hattori, K., Pergola, N., and Tramutoli, V., Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015), J. Geophys. Res.: Solid Earth, 2021, vol. 126, p. e2020JB020108. https://doi.org/10.1029/2020JB020108

  19. Gileva, N.A., Mel’nikova, V.I., Radziminovich, Ya.B., and Seredkina, A.I., The Maksimikhin earthquake of May 20, 2008 with K P = 14.3, M w = 5.3, I 0 = 7 (the Central Baikal region), in Zemletryaseniya Severnoi Evrazii, 2008 god (Earthquakes in Northern Eurasia in 2008), Obninsk: GS RAN, 2014, pp. 337–345.

  20. Gileva, N.A., Mel’nikova, V.I., Seredkina, A.I., and Radziminovich, Ya.B., The Muyakan-II earthquake of May 23, 2014 with K P = 14.3, Mw = 5.5, I0 = 7–8 (northern Baikal region), in Zemletryaseniya Severnoi Evrazii, god 2014 (Earthquakes in Northern Eurasia in 2014), Obninsk: EGS RAN, 2020, vol. 23, pp. 323–333. https://doi.org/10.35540/1818-6254.2020.23.33.

  21. Gladkov, A.A. and Lunina, O.V., Development of an interactive information system for models of composite seismogenic sources in the south of Eastern Siberia, Vestn. Irkutsk. Gos. Tekh. Univ., 2014, no. 9, pp. 17–24.

  22. Gladkov, A.A., Lunina, O.V., and Andreev, A.V., Some aspects of the development of an information system for integrating data on active tectonics, Geoinformatika, 2013, no. 4, pp. 6–14.

  23. Imashev, S.A. and Sverdlik, L.G., Variations in atmospheric temperature during high seismic activity in Japan in 2011, Nauka, Nov. Tekhnol. Innovatsii, 2015, 1, 15-19.

    Google Scholar 

  24. Kashkin, V.B., Romanov, A.A., Grigor’ev, A.S., and Baskova, A.A., Tropospheric effects of earthquakes in Tuva observed from Earth’s artificial satellites, Zh. Sib. Fed. Univ., Tekh. Tekhnol., 2012, vol. 5, no. 2, pp. 220–228.

    Google Scholar 

  25. Keilis-Borok, V.I., Knopoff, L., Kossobokov, V.G., and Rotvain, I.M., Intermediate term prediction in advance of the Loma Prieta earthquake, Geophys. Res. Lett., 1990, vol. 17, no. 9, pp. 1461–1464.

    Article  ADS  Google Scholar 

  26. Logachev, N.A., History and geodynamics of the Baikal rift, Russ. Geol. Geophys., 2003, vol. 44, no. 5, pp. 391–406.

    Google Scholar 

  27. Marchetti, D., De Santis, A., Campuzano, S.A., Zhu, K., Soldani, M., D’Arcangelo, S., Orlando, M., Wang, T., Cianchini, G., Di Mauro, D., et al., Worldwide statistical correlation of eight years of Swarm satellite data with M5.5+ earthquakes: New hints about the preseismic phenomena from space, Remote Sens., 2022, vol. 14, p. 2649. https://doi.org/10.3390/rs14112649

    Article  ADS  Google Scholar 

  28. Mats, V.D., Granina, L.Z., and Efimova, I.M., The Baikal rift: Towards the ocean, Priroda, 2014, no. 2, pp. 28–38.

  29. Mel’nikova, V.I., Gileva, N.A., Imaev, V.S., Radziminovich, Ya.B., and Tubanov, Ts.A., Features of seismic activation of the Middle Baikal region, 2008–2011, Dokl. Earth Sci., 2013, vol. 453, no. 6, pp. 1282–1287. https://doi.org/10.1134/S1028334X13120210

    Article  ADS  CAS  Google Scholar 

  30. Mel’nikova, V.I., Gileva, N.A., Radziminovich, Ya.B., and Seredkina, A.I., The Kultuk earthquake of August 27, 2008 with Mw = 6.3, I0 = 8–9 (Southern Baikal), in Zemletryaseniya Severnoi Evrazii, 2008 god (Earthquakes in Northern Eurasia in 2008), Obninsk: GS RAN, 2014, pp. 386–407.

  31. Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P., Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 2007, vol. 431, pp. 211–220.

    Article  ADS  Google Scholar 

  32. Pavlidou, E., van der Meijde, M., van der Werff, H., and Hecker, C., Time series analysis of land surface temperatures in 20 earthquake cases worldwide, Remote Sens., 2018, vol. 11, no. 1, p. 61. https://doi.org/10.3390/rs11010061

    Article  ADS  Google Scholar 

  33. Petit, C. and Déverchère, J., Structure and evolution of the Baikal rift: A synthesis, Geochem. Geophys. Geosyst., 2006, vol. 7, p. Q11016. https://doi.org/10.1029/2006GC001265

    Article  ADS  Google Scholar 

  34. Prasad, B.S.N., Nagaraja, K., Chandrashekara, M.S., Paramesh, L., and Madhava, M.S., Diurnal and seasonal variations of radioactivity and electrical conductivity near the surface for a continental location Mysore, India, Atmos. Res., 2005, vol. 76, nos. 1–4, pp. 65–77.

    Article  CAS  Google Scholar 

  35. Pulinets, S.A., Ouzounov, D., Karelin, A.V., Boyarchuk, K.A., and Pokhmelnykh, L.A., The physical nature of thermal anomalies observed before strong earthquakes, Phys. Chem. Earth, 2006, vol. 31, nos. 4–9, pp. 143–153. https://doi.org/10.1016/j.pce.2006.02.042

    Article  ADS  Google Scholar 

  36. Pulinets, S.A., Bondur, V.G., Tsidilina, M.N., and Gaponova, M.V., Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 2, pp. 231–242.

  37. Pulinets, S.A., Ouzounov, D.P., Karelin, A.V., and Davidenko, D.V., Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 540–558.

  38. Radziminovich, Y.B., Gileva, N.A., Tubanov, T.A., Lukhneva, O.F., Novopashina, A.V., and Tcydypova, L.R., The December 9, 2020, Mw 5.5 Kudara earthquake (Middle Baikal, Russia): Internet questionnaire hard test and macroseismic data analysis, Bull. Earthquake Eng., 2022, vol. 20, no. 3, pp. 1297–1324. https://doi.org/10.1007/s10518-021-01305-8

    Article  Google Scholar 

  39. Ruzmaikin, A., Aumann, H.H., and Manning, E.M., Relative humidity in the troposphere with AIRS, J. Atmos. Sci., 2014, pp. 2516–2533. https://doi.org/10.1175/JAS-D-13-0363.1

  40. San’kov, V.A., Parfeevets, A.V., Lukhnev, A.V., Miroshnichenko, A.I., and Ashurkov, S.V., Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia–Siberia mobile area, Geotectonics, 2011, vol. 45, pp. 378–393. https://doi.org/10.1134/S0016852111050049

    Article  ADS  Google Scholar 

  41. Saradjian, M.R. and Akhoondzadeh, M., Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, no. 4, pp. 1109–1119. https://doi.org/10.5194/nhess-11-1109-2011

    Article  ADS  Google Scholar 

  42. Seredkina, A.I., The state of the art in studying the deep structure of the Earth’s crust and upper mantle beneath the Baikal rift from seismological data, Izv., Phys. Solid Earth, 2021, vol. 57, no. 2, pp. 180–202. https://doi.org/10.1134/S1069351321020117

    Article  Google Scholar 

  43. Smirnov, V.M., Smirnova, E.V., Tsidilina, M.N., and Gaponova, M.V., Seismo-ionospheric variations during strong earthquakes based on the example of the 2010 earthquake in Chile, Cosmic Res., 2018, vol. 56, no. 4, pp. 267–275. https://doi.org/10.1134/S0010952518040068

    Article  ADS  Google Scholar 

  44. Sobolev G.A., Ponomarev A.V. Fizika zemletryasenii i predvestniki. M.: Nauka, 2003. 270 s.

  45. Susskind, J., Barnet, C.D., and Blaisdell, J.M., Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE Trans. Geosci. Remote Sens., 2003, vol. 41, no. 2, pp. 390–409. https://doi.org/10.1109/tgrs.2002.808236

    Article  ADS  Google Scholar 

  46. Tronin, A.A., Thermal satellite data for earthquake research, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARS-2000). Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, IEEE, 2000. https://doi.org/10.1109/igarss.2000.859687.

  47. Tubanov, Ts.A., Predein, P.A., Tsydypova, L.R., Sanzhieva, D.P.-D., Radziminovich, N.A., and Bazarov, A.D., Results and prospects of seismological observations in the central part of the Baikal rift, Ross. Seismol. Zh., 2021, vol. 3, no. 4, pp. 38–57. https://doi.org/10.35540/2686-7907.2021.4.03

    Article  Google Scholar 

  48. Zhukov, B.S., Halle, W., Schlotzhauer, G., and Oertel, D., Spatial and temporal analysis of thermal anomalies as earthquake precursors, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2010, vol. 7, no. 2, pp. 333–343.

    Google Scholar 

Download references

Funding

This study was carried out at the AEROCOSMOS Research Institute as part of project no. 122011800095-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Voronova, O.S. Anomalies of Thermal Fields Revealed by Satellite Data during the Preparation and Occurrence of Strong Earthquakes in the Region of the Baikal Rift Zone in 2008–2022. Izv. Atmos. Ocean. Phys. 59, 1348–1360 (2023). https://doi.org/10.1134/S0001433823120046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120046

Keywords:

Navigation