Skip to main content
Log in

Identification of Zones of Hydrothermally Altered Rocks Using WorldView-2 Data at the Talman Site (Talmanskaya Area, South-Eastern Transbaikal, Russia)

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This work is aimed at the practical application of satellite imagery data for the selection of promising areas during geological exploration work in conditions of medium-low mountainous terrain and a sharply continental climate. The processing results and analysis of WorldView-2 data within the Talmanskaya area are presented in order to identify zones of hydrothermal-metasomatic changes in rocks that are promising for identifying of gold-polymetallic mineralization. The choice of the study area is due to sufficient geological knowledge and the absence of man-made formations that affect the result of processing satellite imagery materials. To increase the spectral information content of the WorldView-2 data, the spectral channel ratio method was used, as a result of which a pseudocolor RGB composite was created that displays the spectral characteristics of objects on the Earth’s day surface, in particular, minerals of the oxide/hydroxide group containing transition iron ions (Fe3+ and Fe3+/Fe2+). A comparison of satellite data processing results along with geological information made it possible to identify spectral anomalies as indicators of the presence of near-ore changes, which are an important search criterion for hydrothermal deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Abdelsalam, M. and Stern, R., Mapping gossans in arid regions with Landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea, J. Afr. Earth Sci., 2000, vol. 30, no. 4, pp. 903–916. https://doi.org/10.1016/S0899-5362(00)00059-2

    Article  ADS  Google Scholar 

  2. Asmod’’yarov, I.A., Brel’, A.I., Sinyavin, V.I., et al., Prospecting and checking activities for gold–polymetallic ore mineralization in the northern part of the Klichkinskoe gold–polymetallic ore district (the Transbaikal territory) in 2012–2014. Site no. 111-27(102-24). Report on state contract no. K-01/12-6 of March 20, 2012, Rosgeolfond no. 515591, Moscow, 2015.

  3. Aydal, D., Ardal, E., and Dumanlilar, O., Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: Case study from eastern Tauride belt (SE Turkey), Int. J. Remote Sens., 2007, vol. 28, no. 17, pp. 3895–3913. https://doi.org/10.1080/01431160601105926

    Article  Google Scholar 

  4. Bedini, E., Application of WorldView-3 imagery and ASTE-R TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain, Adv. Space Res., 2019, vol. 63, pp. 3346–3357. https://doi.org/10.1016/j.asr.2019.01.047

    Article  ADS  CAS  Google Scholar 

  5. Clark, R.N., Spectroscopy of rock and minerals and principles of spectroscopy, in Remote Sensing for the Earth Sciences: Manual of Remote Sensing 3, Rencz, A.N., Ed., New York: John Wiley and Sons, 1999, pp. 3–58.

    Google Scholar 

  6. Crowley, J.K., Brickey, D.W., and Rowan, L.C., Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images, Remote Sens. Environ., 1989, vol. 29, pp. 121–134. https://doi.org/10.1016/0034-4257(89)90021-7

    Article  ADS  Google Scholar 

  7. Eldosouky, A.M., Sehsah, H., Elkhateeb, S.O., and Pour, A.B., Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani suture zone, South Eastern Desert, Egypt, Adv. Space Res., 2020, pp. 1008–1024. https://doi.org/10.1016/j.asr.2019.10.030

  8. Fraser, S.J. and Green, A.A., A software defoliant for geological analysis of band ratios, Int. J. Remote Sens., 1987, vol. 8, pp. 525–532.

    Article  Google Scholar 

  9. Gaffey, S.J., Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite, Am. Mineral., 1986, pp. 151–162.

  10. Hunt, G.R., Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 1977, vol. 42, pp. 501–513. https://doi.org/10.1190/1.1440721

    Article  ADS  CAS  Google Scholar 

  11. Hunt, G.R. and Ashley, R.P., Spectra of altered rocks in the visible and near-infrared, Econ. Geol., 1979, vo. 74, pp. 1613–1629.

    Article  CAS  Google Scholar 

  12. Inzana, J., Kusky, T., Higgs, G., and Tucker, R., Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J. Afr. Earth Sci., 2003, vol. 37, pp. 59–72. https://doi.org/10.1016/S0899-5362(03)00071-X

    Article  ADS  CAS  Google Scholar 

  13. Iwasaki, A. and Tonooka, H., Validation of a crosstalk correction algorithm for ASTER/SWIR, IEEE Trans. Geosci. Remote Sens., 2005, vol. 43, pp. 2747–2751. https://doi.org/10.1109/TGRS.2005.855066

    Article  ADS  Google Scholar 

  14. Kalashnikov, V.A., Likhanov, V.D., Chetverikov, M.E., et al., Prospecting activities for gold–polymetallic ores within the Savva-Borzinskii ore node (the Transbaikal territory), Rosgeolfond no. 536243, Moscow, 2019.

  15. Kalinowski, A. and Oliver, S., ASTER Mineral Index Processing Manual, Technical Report, Canberra, Australia: Geoscience Australia, 2004. http://www.ga.gov.au/image_cache/GA7833.pdf. Accessed August 12, 2018.

  16. Kusky, T.M. and Ramadan, T.M., Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: An integrated field, Landsat TM, and SIR-C/X SAR approach, J. Afr. Earth Sci., 2002, vol. 35, pp. 107–121. https://doi.org/10.1016/S0899-5362(02)00029-5

    Article  ADS  CAS  Google Scholar 

  17. Lukin, A.V., Passport no. 205/5676, the Talman site, 2020.

  18. Mars, J.C., Mineral and lithologic mapping capability of WorldView 3 data at Mountain Pass, California, using true-and false-color composite images, band ratios, and logical operator algorithms, Econ. Geol., 2018, vol. 113, pp. 1587–1601. https://doi.org/10.5382/econgeo.2018.4604

    Article  Google Scholar 

  19. Milyaev, S.A., Litokhimicheskie poiski polimetallicheskikh mestorozhdenii (Lithochemical Prospecting of Polymetallic Deposits), Moscow: Nedra, 1988.

  20. Nazarov, A.A., Report on the results of activities for site no. 630-17(111-23). Prospecting with assessment of the potential for gold–polymetallic ore mineralization in main ore districts and nodes of the Argun structural formation zone (the Transbaikal territory), Rosgeolfond no. 528679, Moscow, 2017.

  21. Okada, K., Segawa, K., and Hayashi, I., Removal of the vegetation effect from LANDSAT TM and GER imaging spectroradiometer data, ISPRS J. Photogramm. Remote Sens., 1993, vol. 48, no. 6, pp. 16–27. https://doi.org/10.1016/0924-2716(93)90052-O

    Article  ADS  Google Scholar 

  22. Podwysocki, M.H., Mimms, D.L., Salisbury, J.W., Bender, L.V., and Jones, O.D., Analysis of Landsat-4 TM data for lithologic and image mapping purpose, in Proceedings of Landsat-4 Science Investigations Summary, Greenbelt, Md., 1984, vol. 2, pp. 35–39.

  23. Pour, A.B., Park, Y., Park, T.S., Hong, J.K., Hashim, M., Woo, J., and Ayoobi, I., Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica, Polar Sci., 2018, vol. 16, pp. 23–46. https://doi.org/10.1016/j.polar.2018.02.004

    Article  ADS  Google Scholar 

  24. Pour, A.B., Hashim, M., Hong, J.K., and Park, Y., Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula, Ore Geol. Rev., 2019a, vol. 108, pp. 112–133. https://doi.org/10.1016/j.oregeorev.2017.07.018

    Article  Google Scholar 

  25. Pour, A.B., Park, Y., Crispini, L., Läufer, A., Kuk Hong, J., Park, T.-Y.S., Zoheir, B., Pradhan, B., Muslim, A.M., Hossain, M.S., et al., Mapping listvenite occurrences in the damage zones of Northern Victoria Land, Antarctica using ASTER satellite remote sensing data, Remote Sens., 2019b, vol. 11, p. 1408. https://doi.org/10.3390/rs11121408

    Article  ADS  Google Scholar 

  26. Pour, A.B., Park, T.S., Park, Y., Hong, J.K., Muslim, A., Läufer, A., Crispini, L., Pradhan, B., Zoheir, B., Rahmani, O., Hashim, M., and Hossain, M.S., Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper–gold mineralization in the northeastern Inglefield Mobile Belt (IMB), Northwest Greenland, Remote Sens., 2019c, vol. 11, p. 2430. https://doi.org/10.3390/rs11202430

    Article  ADS  Google Scholar 

  27. Rajendran, S. and Sobhi, N., ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman, Ore Geol. Rev., 2018, vol. 88, pp. 317–335. https://doi.org/10.1016/j.oregeorev.2018.04.014

    Article  Google Scholar 

  28. Rajesh, H.M., Mapping Proterozoic unconformity-related uranium deposits in the Rockole area, Northern Territory, Australia using Landsat ETM+, Ore Geol. Rev., 2008, vol. 33, pp. 382–396. https://doi.org/10.1016/j.oregeorev.2007.02.003

    Article  Google Scholar 

  29. Ramadan, T.M. and Abdel Fattah, M.F., Characterization of gold mineralization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing, Egypt. J. Remote Sens. Space Sci., 2010, vol. 13, pp. 153–163. https://doi.org/10.1016/j.ejrs.2009.08.001

    Article  Google Scholar 

  30. Rowan, L.C., Goetz, A.F.H., and Ashley, R.P., Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images, Geophysics, 1977, vol. 42, no. 3, pp. 522–535. https://doi.org/10.1190/1.1440723

    Article  ADS  CAS  Google Scholar 

  31. Sabins, F.F., Remote Sensing Principles and Interpretation, New York: Freeman and Co., 1996.

    Google Scholar 

  32. Sabins, F.F., Remote sensing strategies for mineral exploration, in Remote Sensing for the Earth Sciences, Rencz, A.E., Ed., New York: John Wiley and Sons, 1997, pp. 375–447.

    Google Scholar 

  33. Salehi, T. and Tangestani, M., Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using WorldView-3 VNIR data in the Northeastern Isfahan, Iran, Int. J. Appl. Earth Obs. Geoinf., 2018, vol. 73, pp. 156–169.

    ADS  Google Scholar 

  34. Segal, D., Theoretical basis for differentiation of ferric-iron bearing minerals, using Landsat MSS data, in Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, Tex., 1982, pp. 949–951.

  35. Sun, Y., Tian, S., and Di, B., Extracting mineral alteration information using WorldView-3 data, Geosci. Front., 2017, vol. 8, pp. 1051–1062. https://doi.org/10.1016/j.gsf.2016.10.008

    Article  CAS  Google Scholar 

  36. Tarabarko, A.N., Patterns of gold–polymetallic mineralization in the Mulinskoe ore-magmatic system, Geol., Poiski Razved. Rudn. Polezn. Iskop., 2000, no. 24, pp. 37–150.

  37. Vodyanitskii, Yu.N., Soedineniya zheleza i ikh rol' v okhrane pochv (Iron Compounds and Their Role in Soil Protection), Moscow: GNU Pochvennyi institut im. V.V. Dokuchaeva Rossel’khozakademii, 2010.

  38. Zonn, S.V., Zhelezo v pochvakh (genetichnsekie i geograficheskie aspekty) (Iron in Soils (Genetic and Geographic Aspects)), Moscow: Nauka, 1982.

Download references

ACKNOWLEDGMENTS

The authors thank PROXIMA (www.gisproxima.ru) for the WorldView-2 images provided.

Funding

This work was carried out within the framework of the State Assignment of the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Ishmukhametova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishmukhametova, V.T., Nafigin, I.O., Ustinov, S.A. et al. Identification of Zones of Hydrothermally Altered Rocks Using WorldView-2 Data at the Talman Site (Talmanskaya Area, South-Eastern Transbaikal, Russia). Izv. Atmos. Ocean. Phys. 59, 1372–1381 (2023). https://doi.org/10.1134/S0001433823120113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120113

Keywords:

Navigation