Skip to main content

Advertisement

Log in

Recent developments in gene therapy research in India

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Inherited genetic disorders are progressive in nature and lead to organ dysfunction or death in severe cases. At present, there are no permanent treatment options for >95% of inherited disorders. Different modes of inheritance, type of gene(s) involved, and population-based variations add further complexity to finding suitable cures for approximately 400 million patients worldwide. Gene therapy is a very promising molecular technique for the treatment of rare genetic disorders. Gene therapy functions on the basis of restoration, replacement, inhibition, and, most recently, editing of gene(s) to rescue the disease phenotype. Recent reports show that increasing numbers of gene therapy clinical trials are using viral vectors (64.2%) when compared with non-viral vectors. Rapid development of efficient viral vector systems like the adeno-associated virus (AAV) and lentivirus has significantly contributed to this progress. Notably, AAV-mediated gene therapy has shown high potential for genetic disease treatment as evident from recent clinical trials for the eye (NCT00999609), blood (NCT00979238), and neuro-muscular systems (NCT02122952). Safety and efficacy are the two most critical features required for vector(s) to qualify for pre-clinical and clinical trial approval. The process of clinical-grade vector production, evaluation, and approvals for gene therapy products requires significant technological development, knowledge enhancement, and large financial investments. Additionally, trained manpower is required to meet the demands for constant technical innovation. These factors together contribute towards exorbitant prices for every dose of a gene therapy product and thus pose a challenge for the gene therapy field. The Indian subcontinent has traditionally lagged behind North America, Europe, Japan, and others in gene therapy clinical trials due to factors like inadequate industrial-scientific infrastructure, lack of accessible and organized patient databases, low financial investments, etc. However, over the last decade, increasing awareness of rare diseases, and international approvals of gene therapies such as Luxturna, Zolgensma, Hemgenix, etc., have spurred gene therapy development in India as well. In view of these advances, this article outlines gene therapy research, regulatory processes, and the launch of gene therapy clinical trials in India in the context of major developments worldwide. We briefly describe ongoing gene therapy research across Indian organizations and the nascent gene therapy product manufacturing. Further, we highlight the various initiatives from the medical and patient community to avail rehabilitation and gene therapy options. We briefly discuss the roles of regulatory agencies and guidelines for gene therapy clinical trials in India. We anticipate that this concise review will highlight the promise of gene therapy for the large population of rare disease patients in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anguela XM and High KA 2019 Entering the modern era of gene therapy. Annu. Rev. Med. 70 273–288

    Article  CAS  PubMed  Google Scholar 

  • Appledorn DM, Patial Sonika, McBride Aaron, et al. 2008 Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J. Immunol. 181 2134–2144

  • Arabi F, Mansouri V and Ahmadbeigi N 2022 Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 153 113324

    Article  CAS  PubMed  Google Scholar 

  • Arber W and Linn S 1969 DNA modification and restriction. Annu. Rev. Biochem. 38 467–500

    Article  CAS  PubMed  Google Scholar 

  • Asokan A, Conway JC, Phillips JL, et al. 2010 Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28 79–82

    Article  CAS  PubMed  Google Scholar 

  • Ayuso E, Mingozzi F and Bosch F 2010 Production, purification and characterization of adeno-associated vectors. Curr. Gene Ther. 10 423–436

    Article  CAS  PubMed  Google Scholar 

  • Bailey AM, Arcidiacono J, Benton KA, et al. 2015 United States Food and Drug Administration regulation of gene and cell therapies; in Regulatory aspects of gene therapy and cell therapy products (Eds.) MC Galli and M Serabian (Springer International Publishing) pp 1–29

  • Bennett A, Hull J, Jolinon N, et al. 2021 Comparative structural, biophysical, and receptor binding study of true type and wild type AAV2. J. Struct. Biol. 213 107795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benskey MJ, Kuhn NC, Galligan JJ, et al. 2015 Targeted gene delivery to the enteric nervous system using AAV: A comparison across serotypes and capsid mutants. Mol. Ther. 23 488–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A and Bhattacharya S 2019 Patient-driven initiatives for prioritizing drug discovery for rare diseases. Indian J. Med. Res. 149 326–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Katoch VM and Majumder PP 2016 Current knowledge and new possibilities. Proc. Indian Nat. Sci. Acad. 82 1183–1187

    Article  Google Scholar 

  • Blaese RM, Culver KW, Miller AD, et al. 1995 T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270 475–480

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bostick B, Ghosh A, Yue Y, et al. 2007 Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther. 14 1605–1609

    Article  CAS  PubMed  Google Scholar 

  • Boycott KM, Lau LP, Cutillo CM, et al. 2019 International collaborative actions and transparency to understand, diagnose, and develop therapies for rare diseases. EMBO Mol. Med. 11 10486

    Article  Google Scholar 

  • Büning H and Srivastava A 2019 Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol. Ther. Methods Clin. Dev. 12 248–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Butera S, Tavarozzi R, Brunello L, et al. 2023 The black swan: a case of central nervous system graft-versus-host disease. J. Basic Clin. Physiol. Pharmacol. 34 805–809

    Article  PubMed  Google Scholar 

  • Capasso C, Garofalo M, Hirvinen M, et al. 2014 The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 6 832–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain JS, Robb M, Braun S, et al. 2023 Microdystrophin expression as a surrogate endpoint for duchenne muscular dystrophy clinical trials. Hum. Gene Ther. 34 404–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chand D, Mohr F, McMillan H, et al. 2021a Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J. Hepatol. 74 560–566

    Article  CAS  PubMed  Google Scholar 

  • Chand DH, Zaidman C, Arya K, et al. 2021b Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J. Pediatr. 231 265–268

    Article  CAS  PubMed  Google Scholar 

  • Choudhury MC and Chaube P 2022 Integrating rare disease management in public health programs in India: exploring the potential of National Health Mission. Orphanet J. Rare Dis. 17 43

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury MC and Saberwal G 2019 The role of patient organizations in the rare disease ecosystem in India: an interview-based study. Orphanet J. Rare Dis. 14 1–14

    Article  Google Scholar 

  • Cupelli K and Stehle T 2011 Viral attachment strategies: the many faces of adenoviruses. Curr. Opin. Virol. 1 84–91

    Article  CAS  PubMed  Google Scholar 

  • Daniel HD, Kumar S, Kannangai R, et al. 2021 Prevalence of adeno-associated virus 3 capsid binding and neutralizing antibodies in healthy and hemophilia B individuals from India. Hum. Gene Ther. 32 451–457

    Article  CAS  PubMed  Google Scholar 

  • Daniel HD, Kumar S, Kannangai R, et al. 2022 Age-stratified adeno-associated virus serotype 3 neutralizing and total antibody prevalence in hemophilia A patients from India. J. Med. Virol. 94 4542–4547

    Article  CAS  PubMed  Google Scholar 

  • Daya S and Berns KI 2008 Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21 583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deverman BE, Ravina BM and Bankiewicz KS 2018 Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17 641–659

    Article  CAS  PubMed  Google Scholar 

  • Doering CB, Denning G and Shields JE 2018 Preclinical development of a hematopoietic stem and progenitor cell bioengineered factor VIII lentiviral vector gene therapy for hemophilia A. Hum. Gene Ther. 29 1183–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W and Kantor B 2021 Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: current state and perspectives. Viruses 13 1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan D, Goemans N, Takeda S, et al. 2021 Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 7 13

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi A, Karulkar A, Ghosh S, et al. 2019 Lymphocytes in cellular therapy: functional regulation of CAR T cells. Front. Immunol. 9 3180

    Article  PubMed  PubMed Central  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J, et al. 2004 Gene therapy clinical trials worldwide 1989–2004 – an overview. J. Gene Med. 6 597–602

    Article  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR and Wixon J 2007 Gene therapy clinical trials worldwide to 2007- An update. J. Gene Med. 9 833–842

    Article  PubMed  Google Scholar 

  • Elverum K and Whitman M 2020 Delivering cellular and gene therapies to patients: solutions for realizing the potential of the next generation of medicine. Gene Ther. 27 537–544

    Article  CAS  PubMed  Google Scholar 

  • Ertl HCJ 2022 Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 13 975803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas AM, Mariz S, Stoyanova-Beninska V, et al. 2017 Advanced therapy medicinal products for rare diseases: state of play of incentives supporting development in Europe. Front. Med. 16 53

    Article  Google Scholar 

  • FDA 2015 Considerations for the design of early-phase clinical trials of cellular and gene therapy products (https://www.fda.gov/media/106369/download)

  • Florea M, Nicolaou F, Pacouret S, et al. 2023 High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol. Ther. Methods Clin. Dev. 28 146–159

    Article  CAS  PubMed  Google Scholar 

  • Flotte TR and Berns KI 2005 Adeno-associated virus: a ubiquitous commensal of mammals. Hum. Gene Ther. 16 401–407

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen SD, Avramović V, Maroilley T, et al. 2022 Rare disorders have many faces: in silico characterization of rare disorder spectrum. Orphanet J. Rare Dis. 17 76

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Mese K, Bunz O, et al. 2019 State-of-the-art human adenovirus vectorology for therapeutic approaches. FEBS Lett. 593 3609–3622

    Article  CAS  PubMed  Google Scholar 

  • Genome Asia100K Consortium 2019 The Genome Asia 100K Project enables genetic discoveries across Asia. Nature 576 106–111

    Article  ADS  Google Scholar 

  • Ghosh A, Yue Y, Shin JH, et al. 2009 Systemic trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for Duchenne muscular dystrophy. Hum. Gene Ther. 20 1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Yue Y and Duan D 2011 Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum. Gene Ther. 22 77–83

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Brown AM, Jenkins C, et al. 2020 Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl. Biosaf. 7 18

    Google Scholar 

  • Ginn SL, Amaya AK, Alexander IE, et al. 2018 Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 20 3015

    Article  Google Scholar 

  • Gopinath C, Rompicherla R, Mathias GP, et al. 2023 Inherited retinal disorders: a genotype-phenotype correlation in an Indian cohort and the importance of genetic testing and genetic counselling. Graefe’s Arch. Clin. Exp. Ophthalmol. 261 2003–2017

    Article  Google Scholar 

  • Gregory SM, Nazir SA and Metcalf JP 2011 Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol. 6 357–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillou J, de Pellegars A, Porcheret F, et al. 2022 Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv. 6 4266–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A and Anderson S 2020 Cell and gene therapy: Overview, current landscape, and future trends. J. Precis. Med. (https://www.thejournalofprecisionmedicine.com/the-journal-of-precision-medicine/cell-and-gene-therapy-overview-current-landscape-and-future-trends/)

  • Hanlon KS, Meltzer JC, Buzhdygan T, et al. 2019 Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. Mol. Ther. Methods Clin. Dev. 15 320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hareendran S, Ramakrishna B and Jayandharan GR 2015 Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy. Eur. J. Immunol. 46 154–166

    Article  PubMed  Google Scholar 

  • Hartman ZC, Kiang A, Everett RS, et al. 2007 Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J. Virol. 81 1796–1812

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth WW, Aleman TS, Kaushal S, et al. 2008 Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19 979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Urip BA, Zhang Z, et al. 2021 Evolving AAV-delivered therapeutics towards ultimate cures. J. Mol. Med. 99 593–617

    Article  PubMed  Google Scholar 

  • High KA and Aubourg P 2011 rAAV human trial experience. Methods Mol. Biol. 807 429–457

    Article  CAS  PubMed  Google Scholar 

  • High KA and Roncarolo MG 2019 Gene therapy. N. Engl. J. Med. 381 455–464

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BE and Herzog RW 2013 Covert warfare against the immune system: decoy capsids, stealth genomes, and suppressors. Mol. Ther. 21 1648–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy SM 2019 Onasemnogene abeparvovec: first global approval. Drugs 79 1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MV, Hanlon KS, Hathaway DM, et al. 2021 AAV-S: A versatile capsid variant for transduction of mouse and primate inner ear. Mol. Ther. Methods Clin. Dev. 21 382–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson H, Rafiq S and Brentjens R 2016 Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13 370–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar A, Mehrotra S and Chatterjee S 2020 CD38 T cell immuno-metabolic modulator. Cells 9 1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwakura Y, Baatartsogt N, Yamazaki S, et al. 2022 The seroprevalence of neutralizing antibodies against the adeno-associated virus capsids in Japanese hemophiliacs. Mol. Ther. Methods Clin. Dev. 27 404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassir Z, Sarpatwari A, Kocak B, et al. 2020 Sponsorship and funding for gene therapy trials in the United States. JAMA 3 890–891

    Article  Google Scholar 

  • Keeler AM, ElMallah MK and Flotte TR 2017 Gene therapy 2017: Progress and future directions. Clin. Transl. Sci. 10 242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MA and Parks RJ 2009 Adenovirus virion stability and the viral genome: size matters. Mol. Ther. 17 1664–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bammidi S and Jayandharan GR 2019 A CD33 antigen targeted AAV6 vector expressing an inducible caspase-9 suicide gene is therapeutic in a xenotransplantation model of acute myeloid leukemia. Bioconjug. Chem. 30 2404–2416

    Article  CAS  PubMed  Google Scholar 

  • Kichula EA, Proud CM, Farrar MA, et al. 2021 Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 64 413–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L, et al. 2009 Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 10 918–928

    Article  Google Scholar 

  • Kohn DB, Booth C, Shaw KL, et al. 2021 Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N. Engl. J. Med. 384 2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu J, Ghosh A, Ghosh U, et al. 2022 Synthesis of phosphorodiamidate morpholino oligonucleotides using Trityl and Fmoc chemistry in an automated oligo synthesizer. J. Org. Chem. 87 9466–9478

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Bishop ES, Zhang R, et al. 2017 Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 4 43–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CE, Singleton KS, Wallin M, et al. 2020 Rare genetic diseases: nature's experiments on human development. iScience 23 101–123

  • Lerch TF and Chapman MS 2012 Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B). Virology 423 6–13

    Article  CAS  PubMed  Google Scholar 

  • Li C, Diprimio N, Bowles DE, et al. 2012 Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J. Virol. 86 7752–7759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhu M, Zhang Y, et al. 2021 Crossing the blood-brain barrier with AAV vectors. Metab. Brain Dis. 36 45–52

    Article  PubMed  Google Scholar 

  • Mace E, Caplette R, Marre O, et al. 2015 Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol. Ther. 23 7–16

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Wang X, Yan R, et al. 2016 Single point mutation in adeno-associated viral vectors-DJ capsid leads to improvement for gene delivery in vivo. BMC Biotechnol. 5 1

    Article  CAS  Google Scholar 

  • Martino AT, Basner-Tschakarjan E, Markusic DM, et al. 2013 Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 21 2224–2233

    Article  Google Scholar 

  • Mary B, Maurya S, Kumar M, et al. 2019 Molecular Engineering of adeno-associated virus capsid improves its therapeutic gene transfer in murine models of hemophilia and retinal degeneration. Mol. Pharm. 16 4738–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattingly TJ and Simoni-Wastila L 2017 Patient-centered drug approval: the role of patient advocacy in the drug approval process. J. Manag. Care Spec. Pharm. 23 1078–1082

    PubMed  Google Scholar 

  • Maude SL, Laetsch TW, Buechner J, et al. 2018 Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Eng. J. Med. 378 439–448

    Article  CAS  Google Scholar 

  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. 2021 Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29 464–488

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F and High KA 2011a Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12 341–355

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F and High KA 2011b Immune responses to AAV in clinical trials. Curr. Gene Ther. 11 321–330

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F, Anguela XM, Pavani G, et al. 2013 Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 5 92

    Article  Google Scholar 

  • Mikami K 2019 Orphans in the market: the history of orphan drug policy. Soc. Hist. Med. 32 609–630

    Article  Google Scholar 

  • Mulligan RC 1993 The basic science of gene therapy. Science 14 926–932

    Article  ADS  Google Scholar 

  • Nangia V, Jonas JB, Khare A, et al. 2012 Prevalence of retinitis pigmentosa in India: The Central India Eye and Medical Study. Acta Ophthalmol. 90 649–650

    Article  Google Scholar 

  • Nathwani AC, Reiss UM, Tuddenham EG, et al. 2014 Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371 1994–2200

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Davidoff AM and Tuddenham EGD 2017 Advances in gene therapy for hemophilia. Hum. Gene Ther. 28 1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Nirmalan PK, Krishnaiah S, Nutheti R, et al. 2006 Consanguinity and eye diseases with a potential genetic etiology. Data from a prevalence study in Andhra Pradesh, India. Ophthal. Epidemiol. 13 7–13

    Article  Google Scholar 

  • Palfi S, Gurruchaga JM, Scott RG, et al. 2014 Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383 1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Panikker P, Roy S, Ghosh A, et al. 2022 Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front. Med. 9 906482

    Article  Google Scholar 

  • Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, et al. 2015 Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front. Mol. Neurosci. 8 14

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil VM, Singhai P, Noronha V, et al. 2021 Effect of early palliative care on quality of life of advanced head and neck cancer patients: A phase III Trial. J. Natl. Cancer Inst. 113 1228–1237

    Article  PubMed  Google Scholar 

  • Patil VM, Noronha V, Menon N, et al. 2023 Low-dose immunotherapy in head and neck cancer: A randomized study. J. Clin. Oncol. 41 222–232

    Article  CAS  PubMed  Google Scholar 

  • Piguet F, Alves S and Cartier N 2017 Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum. Gene Ther. 28 988–1003

    Article  CAS  PubMed  Google Scholar 

  • Poletti V and Mavilio F 2021 Designing lentiviral vectors for gene therapy of genetic diseases. Viruses 13 5

    Article  Google Scholar 

  • Raper SE, Chirmule N, Lee FS, et al. 2003 Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80 148–158

    Article  CAS  PubMed  Google Scholar 

  • Richter T, Nestler-Parr S, Babela R, et al. 2015 Rare disease terminology and definitions–a systematic global review: Report of the ISPOR Rare Disease Special Interest Group. Value Health 18 906–914

    Article  PubMed  Google Scholar 

  • Russell S, Bennett J, Jennifer A Wellman, et al. 2017 Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390 849–860

  • Sainz-Ramos M, Gallego I, Villate-Beitia I, et al. 2021 How far are non-viral vectors to come of age and reach clinical translation in gene therapy? Int. J. Mol. Sci. 22 7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Panikker P, D’Souza S, et al. 2023 Corneal regeneration using gene therapy approaches. Cells 12 1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmer J and Breazzano S 2016 Investor outlook: rising from the ashes; GSK’s European approval of strimvelis for ADA-SCID. Hum. Gene Ther. Clin. Dev. 27 57–61

    Article  CAS  PubMed  Google Scholar 

  • Seimetz D, Heller K and Richter J 2019 Approval of first CAR-Ts: have we solved all hurdles for ATMPs? Cell Med. 17 2155

    Google Scholar 

  • Selot RS, Hareendran S and Jayandharan GR 2014 Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol. 14 1072–1082

    Article  PubMed  Google Scholar 

  • Selot R, Arumugam S, Mary B, et al. 2017 Optimized AAV rh.10 vectors that partially evade neutralizing antibodies during hepatic gene transfer. Front. Pharmacol. 8 441

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahryari A, Saghaeian Jazi M, Mohammadi S, et al. 2019 Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 25 868

    Article  Google Scholar 

  • Simonelli F, Maguire AM, Testa F, et al. 2010 Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 18 643–650

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Chakraborty D and Maiti S 2016 CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chem. Soc. Rev. 45 6666–6684

    Article  CAS  PubMed  Google Scholar 

  • Stoler JM 2017 Prenatal and postnatal genetic testing: why, how, and when? Pediatr. Ann. 4 423–427

    Google Scholar 

  • Tabebordbar M, Lagerborg KA, Stanton A, et al. 2021 Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184 4919–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The GUaRDIAN Consortium, Sivasubbu S and Scaria V 2019 Genomics of rare genetic diseases-experiences from India. Hum. Genomics 14 52

    Google Scholar 

  • Trapani I, Puppo A and Auricchio A 2014 Vector platforms for gene therapy of inherited retinopathies. Prog. Retin. Eye Res. 43 108–128

    Article  CAS  PubMed  Google Scholar 

  • The Hindu 2023 Bengaluru-based eye hospital to soon start human clinical trials of indigenous gene therapy for ocular diseases. https://www.thehindu.com/sci-tech/health/bengaluru-based-eye-hospital-to-soon-start-human-clinical-trials-of-indigenous-gene-therapy-for-ocular-diseases/article67123498.ece

  • Van Vliet K, Mohiuddin Y, McClung S, et al. 2009 Adeno-associated virus capsid serotype identification: Analytical methods development and application. J. Virol. Methods 159 167–177

    Article  PubMed  Google Scholar 

  • Vandenberghe LH, Wilson JM and Gao G 2009 Tailoring the AAV vector capsid for gene therapy. Gene Ther. 16 311–319

    Article  CAS  PubMed  Google Scholar 

  • Vashishta L, Bapat P, Bhattacharya Y, et al. 2023 A survey of awareness of diagnosis and treatment of rare diseases among healthcare professionals and researchers in India. J. Biosci. 48 37

    Article  PubMed  Google Scholar 

  • Verdera HC, Kuranda K and Mingozzi F 2020 AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol. Ther. 28 723–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vormittag P, Gunn R, Ghorashian S, et al. 2018 A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53 164–181

    Article  CAS  PubMed  Google Scholar 

  • Wall JD, Sathirapongsasuti JF, Gupta R, et al. 2023 South Asian medical cohorts reveal strong founder effects and high rates of homozygosity. Nat. Commun. 14 3377

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinmann J, Weis S, Sippel J, et al. 2020 Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11 5432

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • White M, Whittaker R, Gándara C, et al. 2017 A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum. Gene Ther. Methods 28 163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wold WS and Toth K 2013 Adenovirus vectors for gene therapy, vaccination, and cancer gene therapy. Curr. Gene Ther. 13 421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Asokan A and Samulski RJ 2006 Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14 316–327

    Article  CAS  PubMed  Google Scholar 

  • Yanez-Munoz RJ, Balaggan KS, McNeil A, et al. 2006 Effective gene therapy with non-integrating lentiviral vectors. Nat. Med. 12 348–353

    Article  CAS  PubMed  Google Scholar 

  • Yohe S, Sivasankar M, Ghosh A, et al. 2020 Prevalence of mutations in inherited retinal diseases: A comparison between the United States and India. Mol. Genet. Genomic Med. 8 1081

    Article  Google Scholar 

  • Yue Y, Pan X, Hakim Ch, et al. 2015 Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum. Mol. Genet. 24 5880–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zincarelli C, Soltys S, Rengo G, et al. 2008 Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16 1073–1080

    Article  CAS  PubMed  Google Scholar 

  • ZOLGENSMA clinical studies 2020 (https://www.zolgensma.com/clinical-studies)

Download references

Acknowledgements

The authors also acknowledge the hard work done by various laboratories and departments in the institutes and biopharma industry across India that are involved in developing cutting-edge gene and cell therapies; if any of them have been missed out in this review, it is entirely unintentional.

Funding

The authors gratefully acknowledge the kind support received from the funding agencies (VGST, GRD 374 to AG).

Author information

Authors and Affiliations

Authors

Contributions

AG conceptualized the manuscript and wrote the manuscript along with RS. RS made the figures and tables. RS and AG have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Arkasubhra Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in writing the article.

Additional information

Corresponding editor: Sudha Bhattacharya

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selot, R., Ghosh, A. Recent developments in gene therapy research in India. J Biosci 49, 37 (2024). https://doi.org/10.1007/s12038-024-00423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-024-00423-0

Keywords

Navigation