Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Baryonic properties of nearby galaxies across the stellar-to-total dynamical mass relation

Abstract

In the standard cosmological model, the assembly of galaxies is primarily driven by the growth of their host dark matter halos. At the centre of these halos, however, baryonic processes take over, leading to the plethora of observed galaxy properties. The coupling between baryonic and dark matter physics is central to our understanding of galaxies, and yet, it remains a challenge for theoretical models and observations. Here, we demonstrate that measured ages, metallicities, stellar angular momentum, morphology and star formation rates are correlated with both stellar and halo mass. We find using dynamical modelling that at fixed stellar mass, CALIFA galaxies are younger, more metal-poor and rotationally supported and have higher star formation rates and later-type morphologies as their total mass increases, due to the independent measurements of the stellar and total masses. These results indicate that the formation of galaxies and, thus, their baryonic properties do not vary with stellar mass alone, with halo mass also playing an important role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stellar-to-total dynamical mass relation for CALIFA galaxies in terms of their stellar population properties.
Fig. 2: Stellar-to-total dynamical mass relation for CALIFA galaxies in terms of different baryonic properties.

Similar content being viewed by others

Data availability

Ancillary data on the galaxy properties used in this study are available. Stellar masses, SFRs, apparent angular momentum and the morphological classification can be found in Table B.1 of ref. 65, and the stellar population properties can be found in ref. 61 and can be downloaded at https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/581/A103. The total dynamical masses used in this study will be published in a forthcoming paper (Lyubenova et al., manuscript in preparation), although they can be provided upon reasonable request by contacting mlyubeno@eso.org. The group and cluster catalogue from ref. 30 is available at https://gax.sjtu.edu.cn/data/Group.html. The EAGLE database76 is public and available at https://icc.dur.ac.uk/Eagle/database.php.

Code availability

We obtain the total dynamical masses of the galaxies by fitting axisymmetric dynamical models to their stellar kinematic maps. Our dynamical models and codes used for their determination are described in detail in a forthcoming paper (Lyubenova et al., manuscript in preparation).

References

  1. Faber, S. M. & Jackson, R. E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 204, 668–683 (1976).

    Article  CAS  ADS  Google Scholar 

  2. Tully, R. B. & Fisher, J. R. A new method of determining distances to galaxies. Astron. Astrophys. 54, 661–673 (1977).

    ADS  Google Scholar 

  3. Djorgovski, S. & Davis, M. Fundamental properties of elliptical galaxies. Astrophys. J. 313, 59 (1987).

    Article  ADS  Google Scholar 

  4. Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005).

    Article  CAS  ADS  Google Scholar 

  5. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article  ADS  Google Scholar 

  6. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984).

    Article  CAS  ADS  Google Scholar 

  7. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article  CAS  ADS  Google Scholar 

  9. Lim, S. H., Mo, H. J., Wang, H. & Yang, X. An observational proxy of halo assembly time and its correlation with galaxy properties. Mon. Not. R. Astron. Soc. 455, 499–510 (2016).

    Article  CAS  ADS  Google Scholar 

  10. Moster, B. P., Naab, T. & White, S. D. M. EMERGE – an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    Article  CAS  ADS  Google Scholar 

  11. Cowley, W. I. et al. The stellar-to-halo mass ratios of passive and star-forming galaxies at z ~ 2–3 from the SMUVS survey. Astrophys. J. 874, 114 (2019).

    Article  CAS  ADS  Google Scholar 

  12. Scholz-Díaz, L., Martín-Navarro, I. & Falcón-Barroso, J. The dark side of galaxy stellar populations – I. The stellar-to-halo mass relation and the velocity dispersion-halo mass relation. Mon. Not. R. Astron. Soc. 511, 4900–4920 (2022).

    Article  ADS  Google Scholar 

  13. Oyarzún, G. A. et al. SDSS-IV MaNGA: how the stellar populations of passive central galaxies depend on stellar and halo mass. Astrophys. J. 933, 88 (2022).

    Article  ADS  Google Scholar 

  14. More, S. et al. Satellite kinematics – III. Halo masses of central galaxies in SDSS. Mon. Not. R. Astron. Soc. 410, 210–226 (2011).

    Article  ADS  Google Scholar 

  15. Mandelbaum, R. et al. Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing. Mon. Not. R. Astron. Soc. 457, 3200–3218 (2016).

    Article  CAS  ADS  Google Scholar 

  16. Rodríguez-Puebla, A. et al. The stellar-to-halo mass relation of local galaxies segregates by color. Astrophys. J. 799, 130 (2015).

    Article  ADS  Google Scholar 

  17. Correa, C. A. & Schaye, J. The dependence of the galaxy stellar-to-halo mass relation on galaxy morphology. Mon. Not. R. Astron. Soc. 499, 3578–3593 (2020).

    Article  CAS  ADS  Google Scholar 

  18. Cui, W., Davé, R., Peacock, J. A., Anglés-Alcázar, D. & Yang, X. The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nat. Astron. 5, 1069–1076 (2021).

    Article  ADS  Google Scholar 

  19. Wang, L., De Lucia, G. & Weinmann, S. M. On the scatter in the relation between stellar mass and halo mass: random or halo formation time dependent? Mon. Not. R. Astron. Soc. 431, 600–608 (2013).

    Article  ADS  Google Scholar 

  20. Tojeiro, R. et al. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web. Mon. Not. R. Astron. Soc. 470, 3720–3741 (2017).

    Article  CAS  ADS  Google Scholar 

  21. Matthee, J. et al. The origin of scatter in the stellar mass-halo mass relation of central galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 465, 2381–2396 (2017).

    Article  CAS  ADS  Google Scholar 

  22. Zu, Y. et al. Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters? Mon. Not. R. Astron. Soc. 505, 5117–5128 (2021).

    Article  CAS  ADS  Google Scholar 

  23. Gao, L., Springel, V. & White, S. D. M. The age dependence of halo clustering. Mon. Not. R. Astron. Soc. 363, L66–L70 (2005).

    Article  ADS  Google Scholar 

  24. Mao, Y.-Y., Zentner, A. R. & Wechsler, R. H. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes. Mon. Not. R. Astron. Soc. 474, 5143–5157 (2018).

    Article  CAS  ADS  Google Scholar 

  25. Zehavi, I. et al. The impact of assembly bias on the galaxy content of dark matter halos. Astrophys. J. 853, 84 (2018).

    Article  ADS  Google Scholar 

  26. Artale, M. C., Zehavi, I., Contreras, S. & Norberg, P. The impact of assembly bias on the halo occupation in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 480, 3978–3992 (2018).

    Article  CAS  ADS  Google Scholar 

  27. Croton, D. J., Gao, L. & White, S. D. M. Halo assembly bias and its effects on galaxy clustering. Mon. Not. R. Astron. Soc. 374, 1303–1309 (2007).

    Article  ADS  Google Scholar 

  28. Roberts, M. S. A high-resolution 21-cm hydrogen-line survey of the Andromeda nebula. Astrophys. J. 144, 639 (1966).

    Article  ADS  Google Scholar 

  29. Rubin, V. C. & Ford Jr, W. K. Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379 (1970).

    Article  ADS  Google Scholar 

  30. Yang, X. et al. Galaxy groups in the SDSS DR4. I. The catalog and basic properties. Astrophys. J. 671, 153–170 (2007).

    Article  ADS  Google Scholar 

  31. Posti, L. & Fall, S. M. Dynamical evidence for a morphology-dependent relation between the stellar and halo masses of galaxies. Astron. Astrophys. 649, A119 (2021).

    Article  CAS  ADS  Google Scholar 

  32. Posti, L., Fraternali, F. & Marasco, A. Peak star formation efficiency and no missing baryons in massive spirals. Astron. Astrophys. 626, A56 (2019).

    Article  CAS  ADS  Google Scholar 

  33. Jeans, J. H. The motions of stars in a Kapteyn universe. Mon. Not. R. Astron. Soc. 82, 122–132 (1922).

    Article  ADS  Google Scholar 

  34. Schwarzschild, M. A numerical model for a triaxial stellar system in dynamical equilibrium. Astrophys. J. 232, 236–247 (1979).

    Article  ADS  Google Scholar 

  35. Cappellari, M. et al. The SAURON project – IV. The mass-to-light ratio, the virial mass estimator and the fundamental plane of elliptical and lenticular galaxies. Mon. Not. R. Astron. Soc. 366, 1126–1150 (2006).

    Article  ADS  Google Scholar 

  36. Walcher, C. J. et al. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey. Astron. Astrophys. 569, A1 (2014).

    Article  MathSciNet  Google Scholar 

  37. Baker, W. M. & Maiolino, R. Stellar mass, not dynamical mass nor gravitational potential, drives the mass–metallicity relationship. Mon. Not. R. Astron. Soc. 521, 4173–4179 (2023).

    Article  ADS  Google Scholar 

  38. Behroozi, P., Wechsler, R. H., Hearin, A. P. & Conroy, C. UNIVERSEMACHINE: the correlation between galaxy growth and dark matter halo assembly from z = 0–10. Mon. Not. R. Astron. Soc. 488, 3143–3194 (2019).

    Article  CAS  ADS  Google Scholar 

  39. Bradshaw, C., Leauthaud, A., Hearin, A., Huang, S. & Behroozi, P. Physical correlations of the scatter between galaxy mass, stellar content, and halo mass. Mon. Not. R. Astron. Soc. 493, 337–350 (2020).

    Article  CAS  ADS  Google Scholar 

  40. Davies, J. J., Crain, R. A. & Pontzen, A. Quenching and morphological evolution due to circumgalactic gas expulsion in a simulated galaxy with a controlled assembly history. Mon. Not. R. Astron. Soc. 501, 236–253 (2021).

    Article  CAS  ADS  Google Scholar 

  41. Davies, J. J., Crain, R. A., Oppenheimer, B. D. & Schaye, J. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Mon. Not. R. Astron. Soc. 491, 4462–4480 (2020).

    Article  CAS  ADS  Google Scholar 

  42. Moster, B. P., Naab, T. & White, S. D. M. EMERGE – empirical constraints on the formation of passive galaxies. Mon. Not. R. Astron. Soc. 499, 4748–4767 (2020).

    Article  CAS  ADS  Google Scholar 

  43. Cappellari, M. et al. The ATLAS3D project – XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane. Mon. Not. R. Astron. Soc. 432, 1709–1741 (2013).

    Article  ADS  Google Scholar 

  44. Tortora, C. & Napolitano, N. R. Central dark matter in early-type galaxies. Front. Astron. Space Sci. 8, 197 (2022).

    Article  ADS  Google Scholar 

  45. Auger, M. W. et al. The Sloan lens ACS survey. X. Stellar, dynamical, and total mass correlations of massive early-type galaxies. Astrophys. J. 724, 511–525 (2010).

    Article  ADS  Google Scholar 

  46. Thomas, J. et al. Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. Mon. Not. R. Astron. Soc. 415, 545–562 (2011).

    Article  ADS  Google Scholar 

  47. Lovell, M. R. et al. The fraction of dark matter within galaxies from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 481, 1950–1975 (2018).

    Article  CAS  ADS  Google Scholar 

  48. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    Article  CAS  ADS  Google Scholar 

  49. Papastergis, E., Cattaneo, A., Huang, S., Giovanelli, R. & Haynes, M. P. A direct measurement of the baryonic mass function of galaxies and implications for the galactic baryon fraction. Astrophys. J. 759, 138 (2012).

    Article  ADS  Google Scholar 

  50. Zhu, L. et al. The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey. Nat. Astron. 2, 233–238 (2018).

    Article  ADS  Google Scholar 

  51. Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Lyubenova, M. et al. IMF shape constraints from stellar populations and dynamics from CALIFA. Mon. Not. R. Astron. Soc. 463, 3220–3225 (2016).

    Article  CAS  ADS  Google Scholar 

  53. Martín-Navarro, I. et al. IMF–metallicity: a tight local relation revealed by the CALIFA survey. Astrophys. J. 806, L31 (2015).

    Article  ADS  Google Scholar 

  54. Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  55. Astropy Collaboration. The Astropy project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  56. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Meth. 17, 261–272 (2020).

    Article  CAS  Google Scholar 

  58. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  59. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  60. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (2010); https://doi.org/10.25080/Majora-92bf1922-00a

  61. González Delgado, R. M. et al. The CALIFA survey across the Hubble sequence. Spatially resolved stellar population properties in galaxies. Astron. Astrophys. 581, A103 (2015).

    Article  Google Scholar 

  62. Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G. & Gomes, J. M. Semi-empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method. Mon. Not. R. Astron. Soc. 358, 363–378 (2005).

    Article  ADS  Google Scholar 

  63. Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES. – I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010).

    ADS  Google Scholar 

  64. González Delgado, R. M., Cerviño, M., Martins, L. P., Leitherer, C. & Hauschildt, P. H. Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths. Mon. Not. R. Astron. Soc. 357, 945–960 (2005).

    Article  ADS  Google Scholar 

  65. Falcón-Barroso, J. et al. The CALIFA view on stellar angular momentum across the Hubble sequence. Astron. Astrophys. 632, A59 (2019).

    Article  Google Scholar 

  66. Sánchez, S. F. et al. The mass–metallicity relation revisited with CALIFA. Mon. Not. R. Astron. Soc. 469, 2121–2140 (2017).

    Article  ADS  Google Scholar 

  67. Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138–147 (2004).

    Article  ADS  Google Scholar 

  68. Emsellem, E., Monnet, G. & Bacon, R. The multi-Gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems. I. The formalism. Astron. Astrophys. 285, 723–738 (1994).

    ADS  Google Scholar 

  69. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  70. Falcón-Barroso, J. et al. Stellar kinematics across the Hubble sequence in the CALIFA survey: general properties and aperture corrections. Astron. Astrophys. 597, A48 (2017).

    Article  Google Scholar 

  71. Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. Mon. Not. R. Astron. Soc. 390, 71–86 (2008).

    Article  ADS  Google Scholar 

  72. van de Ven, G. & van der Wel, A. Deprojecting Sérsic profiles for arbitrary triaxial shapes: robust measures of intrinsic and projected galaxy sizes. Astrophys. J. 914, 45 (2021).

    Article  ADS  Google Scholar 

  73. Zhu, K. et al. MaNGA DynPop – I. Quality-assessed stellar dynamical modelling from integral-field spectroscopy of 10K nearby galaxies: a catalogue of masses, mass-to-light ratios, density profiles, and dark matter. Mon. Not. R. Astron. Soc. 522, 6326–6353 (2023).

    Article  ADS  Google Scholar 

  74. Bait, O., Barway, S. & Wadadekar, Y. On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe. Mon. Not. R. Astron. Soc. 471, 2687–2702 (2017).

    Article  CAS  ADS  Google Scholar 

  75. Bluck, A. F. L. et al. Are galactic star formation and quenching governed by local, global, or environmental phenomena? Mon. Not. R. Astron. Soc. 492, 96–139 (2020).

    Article  CAS  ADS  Google Scholar 

  76. McAlpine, S. et al. The EAGLE simulations of galaxy formation: public release of halo and galaxy catalogues. Astron. Comput. 15, 72–89 (2016).

    Article  ADS  Google Scholar 

  77. Behroozi, P. S., Conroy, C. & Wechsler, R. H. A comprehensive analysis of uncertainties affecting the stellar mass–halo mass relation for 0 < z < 4. Astrophys. J. 717, 379–403 (2010).

    Article  CAS  ADS  Google Scholar 

  78. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    Article  ADS  Google Scholar 

  79. Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014).

    Article  Google Scholar 

  80. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    Article  CAS  ADS  Google Scholar 

  81. Dolag, K., Borgani, S., Murante, G. & Springel, V. Substructures in hydrodynamical cluster simulations. Mon. Not. R. Astron. Soc. 399, 497–514 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.S.-D. thanks S. Faber, J. Primack, D. Koo, J. Woo, D. Hellinger, M. Huertas-Company, F. Hasan and J. Schaye for their insightful discussions. L.S.-D., I.M.-N. and J.F.-B. acknowledge support from the Spanish Ministry of Science, Innovation and Universities (Grant Nos. PID2019-107427GB-C32 and PID2022-140869NB-I00) and through the project TRACES from the Instituto de Astrofísica de Canarias, which is partially supported through the state budget and the regional budget of the Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community. I.M.-N. also acknowledges support from Proyectos de I+D por organismos de investigación y empresas en las áreas prioritarias de la estrategia de especialización inteligente de Canarias (RIS-3 and FEDER Canarias 2014–2020; Grant No. ProID2021010080). G.v.d.V. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 724857; Consolidator Grant ArcheoDyn). This research made use of Astropy, a community-developed core Python package for astronomy54,55, and of the Numpy56, Scipy57, Matplotlib58, Emcee59 and Pandas60 libraries.

Author information

Authors and Affiliations

Authors

Contributions

L.S.-D. analysed the data and wrote the paper. L.S.-D., I.M.-N. and J.F.-B. conceived and designed the project. M.L. performed the dynamical modelling and provided the dynamical mass measurements. G.v.d.V. was involved in the dynamical modelling. All authors interpreted and discussed the results and commented on the paper.

Corresponding author

Correspondence to Laura Scholz-Díaz.

Ethics declarations

Inclusion and ethics statement

Our research project was conducted with integrity, respect and inclusivity towards all members of the scientific community. We strive to create a safe, inclusive and supportive environment where everyone can contribute with their perspectives and ideas, regardless of their background or identity.

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Sergio Contreras and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spectral fit from central region within NGC7549.

Spectral fit of the central region from NGC7549. The upper panel shows the galaxy spectrum in black, the best-fit model (stars and gas) in red, and the best-fit model of the gas in green. The residuals of the fit are shown in the bottom panel in blue.

Extended Data Fig. 2 Comparison between total and halo masses.

Total dynamical masses vs. halo masses. We show the residuals of the \(\log {{{{\rm{M}}}}}_{{{{\rm{h}}}}}-\log {{{{\rm{M}}}}}_{\star }\) vs. \(\log {{{{\rm{M}}}}}_{{{{\rm{tot}}}}}-\log {{{{\rm{M}}}}}_{\star }\) relations, that is, δMh vs. δMtot. CALIFA (EAGLE) galaxies are shown with blue (grey) stars (circles). The solid lines correspond to the best-fitting relations and the dashed lines to the fit uncertainties for CALIFA and EAGLE, which are shown in orange and green, respectively. We also show the Spearman rank correlation coefficients. See the Methods for the details on the total and halo mass estimates.

Extended Data Fig. 3 Halo mass and the stellar-to-total dynamical mass relation.

Analogous to the left panel of Fig. 1, but in this case we show the halo mass scale in the upper horizontal axis. Halo masses are estimated using the linear fit to the correlation we found between our total dynamical masses and the halo masses from the group and cluster catalog from ref. 30 (\({M}_{h(Yang+07)}=+1.480\times {M}_{tot(3{R}_{e})}-4.092\)) (based on the subsample in common). The black dashed line corresponds to the equivalence of eq. 21 from ref. 77 in this plane.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz-Díaz, L., Martín-Navarro, I., Falcón-Barroso, J. et al. Baryonic properties of nearby galaxies across the stellar-to-total dynamical mass relation. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02209-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing