Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A metal-catalysed functional group metathesis approach to the carbon isotope labelling of carboxylic acids

Abstract

The distribution, metabolism and ultimate fate of molecules within the body is central to the activity of pharmaceuticals. However, the introduction of radioisotopes into the metabolically stable carbon sites on drugs to probe these features typically requires toxic, radioactive gases such as [14C]CO and [14C]CO2. Here we describe an approach to directly carbon-label carboxylic-acid-containing pharmaceuticals via a metal-catalysed functional group exchange reaction, forming 14C-labelled carboxylic-acid-containing drugs without radioactive gases, in one pot, using an easily available and handled carboxylic acid 14C source. To enable this process, a functional group metathesis of carbon–carbon covalent bonds in acid chloride functionalities is developed, exploiting the ability of nickel catalysts to both reversibly activate carbon–chloride bonds and exchange functionalities between organic molecules. The drug development applicability is illustrated by the direct incorporation of the 14C label or 13C label into an array of complex aryl, alkyl, vinyl and heterocyclic carboxylic acid drugs or drug candidates without gases or a special apparatus, at ambient conditions and without loss of the radiolabel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal-catalysed approaches to carbon isotope exchange with carboxylic acids.
Fig. 2: Design of a metal catalyst for acid chloride metathesis.
Fig. 3: Mechanistic insights into exchange.

Similar content being viewed by others

Data availability

Detailed experimental procedures and characterization of all compounds can be found in the Supplementary Information, and original NMR and gas chromatography data can be found on figshare (https://doi.org/10.6084/m9.figshare.19929908). Crystallographic data for L1Ni(CO)3 has been deposited at the Cambridge Crystallographic Data Centre (CCDC) as 2157554 and can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/getstructures.

References

  1. Hock, F. J. & Gralinski, M. R. Drug Discovery and Evaluation: Methods in Clinical Pharmacology (Springer, 2020).

  2. Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Heys, J. R., Voges, R. & Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14 (John Wiley & Sons, 2009).

  5. Zhao, D., Petzold, R., Yan, J., Muri, D. & Ritter, T. Tritiation of aryl thianthrenium salts with a molecular palladium catalyst. Nature 600, 444–450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, W. et al. Scalable and selective deuteration of (hetero)arenes. Nat. Chem. 14, 334–341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  PubMed  Google Scholar 

  9. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C-H functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  10. Hinsinger, K. & Pieters, G. The emergence of carbon isotope exchange. Angew. Chem. Int. Ed. 58, 9678–9680 (2019).

    Article  CAS  Google Scholar 

  11. Kingston, C. et al. Direct carbon isotope exchange through decarboxylative carboxylation. J. Am. Chem. Soc. 141, 774–779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tortajada, A. et al. Catalytic decarboxylation/carboxylation platform for accessing isotopically labeled carboxylic acids. ACS Catal. 9, 5897–5901 (2019).

    Article  CAS  Google Scholar 

  13. Destro, G. et al. Dynamic carbon isotope exchange of pharmaceuticals with labeled CO2. J. Am. Chem. Soc. 141, 780–784 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Kong, D. et al. Fast carbon isotope exchange of carboxylic acids enabled by organic photoredox catalysis. J. Am. Chem. Soc. 143, 2200–2206 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Destro, G. et al. Transition-metal-free carbon isotope exchange of phenyl acetic acids. Angew. Chem. Int. Ed. 59, 13490–13495 (2020).

    Article  CAS  Google Scholar 

  17. Babin, V. et al. Photochemical strategy for carbon isotope exchange with CO2. ACS Catal. 11, 2968–2976 (2021).

    Article  CAS  Google Scholar 

  18. Bsharat, O. et al. Aldehyde-catalyzed carboxylate exchange in α-amino acids with isotopically labelled CO2. Nat. Chem. 14, 1367–1374 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Gauthier, D. R., Rivera, N. R., Yang, H., Schultz, D. M. & Shultz, C. S. Palladium-catalyzed carbon isotope exchange on aliphatic and benzoic acid chlorides. J. Am. Chem. Soc. 140, 15596–15600 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Reilly, S. W., Lam, Y.-H., Ren, S. & Strotman, N. A. Late-stage carbon isotope exchange of aryl nitriles through Ni-catalyzed C–CN bond activation. J. Am. Chem. Soc. 143, 4817–4823 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Ton, S. J. et al. Rapid access to carbon-isotope-labeled alkyl and aryl carboxylates applying palladacarboxylates. JACS Au 3, 756–761 (2023).

  22. Lee, Y. H. & Morandi, B. Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides. Nat. Chem. 10, 1016–1022 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. De La Higuera Macias, M. & Arndtsen, B. A. Functional group transposition: a palladium-catalyzed metathesis of Ar–X σ-bonds and acid chloride synthesis. J. Am. Chem. Soc. 140, 10140–10144 (2018).

    Article  PubMed  Google Scholar 

  24. Fang, X., Cacharat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nat. Chem. 9, 1105–1109 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reaction. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    Article  CAS  Google Scholar 

  26. Becker, M. R., Watson, R. B. & Schindler, C. S. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reaction. Chem. Soc. Rev. 47, 7867–7881 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quesnel, J. S. et al. Computational study of the palladium-catalyzed carbonylative synthesis of aromatic acid chlorides: the synergistic effect of PtBu3 and CO on reductive elimination. Chem. Eur. J. 22, 15107–15118 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. & Rovis, T. A unique catalyst effects the rapid room-temperature cross-coupling of organozinc reagents with carboxylic acid fluorides, chlorides, anhydrides, and thioesters. J. Am. Chem. Soc. 126, 15964–15965 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Malapit, C. A., Bour, J. R., Brigham, C. E. & Sanford, M. S. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 563, 100–104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quesnel, J. S., Kayser, L. V., Fabrikant, A. & Arndtsen, B. A. Acid chloride synthesis by the palladium-catalyzed chlorocarbonylation of aryl bromides. Chem. Eur. J. 21, 9550–9555 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Quesnel, J. S. & Arndtsen, B. A. A palladium-catalyzed carbonylation approach to acid chloride synthesis. J. Am. Chem. Soc. 135, 16841–16844 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Tamaru, Y. (ed.) in Modern Organonickel Chemistry Ch. 8 (Wiley-VCH, 2005).

  33. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keaveney, S. T. & Schoenebeck, F. Palladium-catalyzed decarbonylative trifluoromethylation of acid fluorides. Angew. Chem. Int. Ed. Engl. 57, 4073–4077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cassar, L. & Foà, M. Halogenotricarbonylnickel anions. Inorg. Nucl. Chem. Lett. 6, 291–294 (1970).

    Article  CAS  Google Scholar 

  36. Gruber, C. C. et al. An algorithm for the deconvolution of mass spectroscopic patterns in isotope labeling studies. Evaluation for the hydrogen−deuterium exchange reaction in ketones. J. Org. Chem. 72, 5778–5783 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, for financial support. We thank the National Science and Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du Québec – Nature et Technologie (FRQNT) supported Centre for Green Chemistry and Catalysis (CGCC) for funding this research. J.Z. thanks FRQNT (318000 – B2X) for providing funding for doctoral studies. P.-L.L.-T. thanks NSERC (PGSD2 – 534186 – 2019) and FRQNT (272570 – B2X) for providing funding for doctoral studies. C.Z. thanks FRQNT (336031– B2X) for providing funding for doctoral studies. We thank N. Saadé and A. Wahba for assistance with HRMS analysis, R. Stein for assistance with NMR analysis and H. Titi for assistance with X-ray diffraction characterization.

Author information

Authors and Affiliations

Authors

Contributions

B.A.A. and D.R.G. conceived and directed the project. R.G.K. helped conceive the idea and conducted the early development, which was fully developed by the research of J.Z., P.-L.L.-T. and C.Z. and the carbon-14 labelling done by H.Y. and J.L. All authors were involved in preparing the manuscript.

Corresponding authors

Correspondence to Donald R. Gauthier Jr or Bruce A. Arndtsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Dieter Muri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–5, considerations, discussion, protocols, methods, data and additional experiments.

Supplementary Data 1

Crystallographic data for L1Ni(CO)3; CCDC reference 2157554.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinney, R.G., Zgheib, J., Lagueux-Tremblay, PL. et al. A metal-catalysed functional group metathesis approach to the carbon isotope labelling of carboxylic acids. Nat. Chem. 16, 556–563 (2024). https://doi.org/10.1038/s41557-024-01447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01447-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing