Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration

Abstract

Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron–electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron–electron interactions to fabricate a large fully fused ‘butterfly’-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual design principle of second-generation strongly correlated polyradical nanographenes beyond a single π-magnetism origin.
Fig. 2: On-surface synthesis and characterization of the ‘butterfly’ molecule 1.
Fig. 3: Spin correlation analysis of molecule 1 with the open-shell tetraradical character.
Fig. 4: Probe the π-magnetism of ‘butterfly’ 1 with a NiCp2 functionalized tip.

Similar content being viewed by others

Data availability

All data are available in the manuscript or the supplementary information. The SPM, spectra data and theoretical calculation results are available in the Zenodo repository at https://doi.org/10.5281/zenodo.8365320.

References

  1. de Oteyza, D. G. & Frederiksen, T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J. Phys. Condens. Matter 34, 443001 (2022).

    Article  Google Scholar 

  2. Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Hieulle, J. et al. On‐surface synthesis and collective spin excitations of a triangulene‐based nanostar. Angew. Chem. Int. Ed. 60, 25224–25229 (2021).

    Article  CAS  Google Scholar 

  6. Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    Article  PubMed  ADS  Google Scholar 

  9. Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Zheng, Y. et al. Designer spin order in diradical nanographenes. Nat. Commun. 11, 6076 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Su, X. et al. Atomically precise synthesis and characterization of heptauthrene with triplet ground state. Nano Lett. 20, 6859–6864 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, W. & Wu, J. Open-shell graphene fragments. Chem 7, 358–386 (2021).

    Article  CAS  Google Scholar 

  14. Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Guo, Y. et al. π-Extended doublet open-shell graphene fragments exhibiting one-dimensional chain stacking. J. Am. Chem. Soc. 144, 2095–2100 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Yazyev, O. V. & Katsnelson, M. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    Article  PubMed  ADS  Google Scholar 

  17. Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5] triangulene. Sci. Adv. 5, eaav7717 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Mishra, S. et al. Collective all‐carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 132, 12139–12145 (2020).

    Article  ADS  Google Scholar 

  19. Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mishra, S. et al. Synthesis and characterization of [7] triangulene. Nanoscale 13, 1624–1628 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Su, J. et al. On-surface synthesis and characterization of [7] triangulene quantum ring. Nano Lett. 21, 861–867 (2020).

    Article  PubMed  ADS  Google Scholar 

  23. Turco, E. et al. Observation of the magnetic ground state of the two smallest triangular nanographenes. JACS Au 3, 1358–1364 (2023).

  24. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Wen, E. C. H. et al. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 144, 13696–13703 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Sanz, S. et al. Spin-polarizing electron beam splitter from crossed graphene nanoribbons. Phys. Rev. Lett. 129, 037701 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wang, D. et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nat. Commun. 14, 1018 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (Do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978).

    Article  CAS  Google Scholar 

  30. Lieb, E. H. Two theorems on the Hubbard model. Phy. Rev. Lett. 62, 1201 (1989).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  31. Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009).

    Article  PubMed  ADS  Google Scholar 

  32. Biswas, K. et al. Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. J. Am. Chem. Soc. 145, 2968–2974 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. González‐Herrero, H. et al. Atomic scale control and visualization of topological quantum phase transition in π‐conjugated polymers driven by their length. Adv. Mater. 33, 2104495 (2021).

    Article  Google Scholar 

  34. Fajtlowicz, S., John, P. E. & Sachs, H. On maximum matchings and eigenvalues of benzenoid graphs. Croat. Chem. Acta 78, 195–201 (2005).

    CAS  Google Scholar 

  35. Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Schüler, M., Rösner, M., Wehling, T., Lichtenstein, A. & Katsnelson, M. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. Phys. Rev. Lett. 111, 036601 (2013).

    Article  PubMed  ADS  Google Scholar 

  37. Malrieu, J.-P. & Trinquier, G. Can a topological approach predict spin-symmetry breaking in conjugated hydrocarbons? J. Phys. Chem. A 120, 9564–9578 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Sánchez-Grande, A. et al. Unravelling the open-shell character of peripentacene on Au (111). J. Phys. Chem. Lett. 12, 330–336 (2020).

    Article  PubMed  Google Scholar 

  39. Biswas, K. et al. Synthesis and characterization of peri‐heptacene on a metallic surface. Angew. Chem. Int. Ed. 134, e202114983 (2022).

    Article  ADS  Google Scholar 

  40. Guo, Y., Sivalingam, K., Valeev, E. F. & Neese, F. SparseMaps—a systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys. 144, 094111 (2016).

    Article  PubMed  ADS  Google Scholar 

  41. Truhlar, D. G., Hiberty, P. C., Shaik, S., Gordon, M. S. & Danovich, D. Orbitals and the interpretation of photoelectron spectroscopy and (e, 2e) ionization experiments. Angew. Chem. Int. Ed. 131, 12460–12466 (2019).

    Article  ADS  Google Scholar 

  42. Ortiz, J. Dyson-orbital concepts for description of electrons in molecules. J. Chem. Phys. 153, 070902 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ormaza, M. et al. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett. 17, 1877–1882 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 366, 623–627 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Wäckerlin, C. et al. Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano 16, 16402–16413 (2022).

    Article  PubMed  Google Scholar 

  47. Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Torbrügge, S., Schaff, O. & Rychen, J. Application of the KolibriSensor to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging. J. Vac. Sci. Technol. B 28, C4E12–C14E20 (2010).

    Article  Google Scholar 

  49. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  50. Brabec, J. et al. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 42, 534–544 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J. Lu acknowledges the support from Ministry of Education (MOE) grants (MOE T2EP50121-0008, MOE-T2EP10221-0005 and MOE-T2EP10123-0004), and National Research Foundation (NRF), Prime Minister’s Office, Singapore, under the Competitive Research Program Award (NRF-CRP29-2022-0004), Agency for Science, Technology and Research (A*STAR) under its Advanced Manufacturing and Engineering Individual Research Grants (AME IRG) grant (project 715 no. M21K2c0113). This work was supported by Science and Technology Project of Jiangsu Province, grant number BZ2022056. We acknowledge support from the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2023051) and the Grant Agency of Czech Republic (GACR) project no. 23-05486 S. J.W. acknowledges the financial support from an A*STAR AME IRG grant (A20E5c0089) and NRF Investigatorship award (NRF-NRFI05-2019-0005). S.S. acknowledges the support from A*STAR under its AME Young Individual Research Grants (YIRG) grant (M22K3c0094). This work was supported by the Czech Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project ‘IT4 Innovations National Supercomputing Center–LM2015070’, and the Computational Chemical Sciences Program of the US Department of Energy, Office of Science, Basic Energy Science (BES), Chemical Sciences, Geosciences and Biosciences Division in the Center for Scalable and Predictive methods for Excitations and Correlated phenomena (SPEC) at Pacific Northwest National Laboratory (PNNL).

Author information

Authors and Affiliations

Authors

Contributions

J. Lu supervised the project. S.S., J.W. and J. Lu. conceived and designed the experiments. L.V. and P.J. conceived the theoretical studies. S.S., H.Y. and M.T. performed the on-surface synthesis and LT–STM measurements. A.P.S., O.S. and P.J. performed the IETS measurements with NiCp2 tip. G.L. and J.W. performed the organic synthesis of the precursor. A.M., L.V., D.S., M.K., Q.C., S.E., J.B. and P.J. performed the theoretical calculations. J. Li helped with the data presentation. S.S., P.J. and J. Lu. wrote the manuscript with input from all authors. All authors contributed to the scientific discussion.

Corresponding authors

Correspondence to Libor Veis, Jishan Wu, Pavel Jelinek or Jiong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ganna Gryn’ova, Shigeki Kawai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Scheme 1, Figs. 1–10, Tables 1–4 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Pinar Solé, A., Matěj, A. et al. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01453-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing