Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable valence tautomerism in lanthanide–organic alloys

Abstract

The inimitable electronic structures of the lanthanide (Ln) ions are key to advanced materials and technologies involving these elements. The trivalent ions are ubiquitous and are used much more widely than the divalent and tetravalent analogues, which possess vastly different optical and magnetic properties. Hence, alteration of the valence electron count by external stimuli can lead to dramatic changes in materials properties. Compounds exhibiting a temperature-induced complete Ln(III)  Ln(II) switch, referred to as a valence tautomeric (VT) transition, are rare. Here we present an abrupt and hysteretic VT transition in a lanthanide-based coordination polymer, SmI2(pyrazine)3, driven by the interconversion of Sm(II)–pyrazine(0) and Sm(III)–pyrazine(·−) redox pairs. Alloying SmI2(pyrazine)3 with Yb(II) yields isomorphous Sm1–xYbxI2(pyrazine)3 solid solutions with VT transition critical temperatures ranging widely from 200 K to 50 K at ambient pressure. These findings demonstrate a simple strategy to realize thermally switchable magnetic materials with chemically tunable transition temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-crystal X-ray diffraction structure of SmI2(pyz)3.
Fig. 2: Magnetic properties of SmI2(pyz)3.
Fig. 3: X-ray absorption spectroscopy.
Fig. 4: Magnetic properties of Sm1–xYbxI2(pyz)3 solid solutions.

Similar content being viewed by others

Data availability

All data are available in the main text or in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2285789 (SmI2(pyz)3 at 230 K), 2285788 (SmI2(pyz)3 at 170 K), 2300988 (YbI2(pyz)3 at 230 K), 2300987 (YbI2(pyz)3 at 170 K) and 2285790 (YbI2(pyz)3 at 120 K). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Bünzli, J.-C. G. in The Lanthanides and Actinides (eds Liddle, S. T., Mills, D. P. & Natrajan, L. S.) 633–685 (World Scientific, 2022).

  2. Ramanathan, A. et al. Chemical design of electronic and magnetic energy scales of tetravalent praseodymium materials. Nat. Commun. 14, 3134 (2023).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  3. Münzfeld, L. et al. Synthesis and properties of cyclic sandwich compounds. Nature https://doi.org/10.1038/s41586-023-06192-4 (2023).

    Article  PubMed  Google Scholar 

  4. Gould, C. A. et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal–metal bonding. Science 375, 198–202 (2022).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 8, 644–656 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Tricoire, M., Mahieu, N., Simler, T. & Nocton, G. Intermediate valence states in lanthanide compounds. Chem. Eur. J. 27, 6860–6879 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Chen, B. et al. Novel valence transition in elemental metal europium around 80 GPa. Phys. Rev. Lett. 129, 016401 (2022).

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Song, J., Fabbris, G., Bi, W., Haskel, D. & Schilling, J. S. Pressure-induced superconductivity in elemental ytterbium metal. Phys. Rev. Lett. 121, 037004 (2018).

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Jayaraman, A., Narayanamurti, V., Bucher, E. & Maines, R. G. Continuous and discontinuous semiconductor–metal transition in samarium monochalcogenides under pressure. Phys. Rev. Lett. 25, 1430 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Stevens, K. W. H. Fluctuating valence in SmS. J. Phys. C 9, 1417–1429 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Sousanis, A., Smet, P. F. & Poelman, D. Samarium monosulfide (SmS): reviewing properties and applications. Materials 10, 953 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Haga, Y. et al. Pressure-induced magnetic phase transition in gold-phase SmS. Phys. Rev. B 70, 220506(R) (2004).

    Article  Google Scholar 

  13. Gilbert Corder, S. N. et al. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials. Nat. Commun. 8, 2262 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Stern, A., Dzero, M., Galitski, V. M., Fisk, Z. & Xia, J. Surface-dominated conduction up to 240 K in the Kondo insulator SmB6 under strain. Nat. Mater. 16, 708–712 (2017).

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Robinson, P. J. et al. Dynamical bonding driving mixed valency in a metal boride. Angew. Chem. Int. Ed. 59, 10996–11002 (2020).

    Article  CAS  Google Scholar 

  16. Radzieowski, M. et al. Abrupt europium valence change in Eu2Pt6Al15 around 45 K. J. Am. Chem. Soc. 140, 8950–8957 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Arvanitidis, J., Papagelis, K., Margadonna, S., Prassides, K. & Fitch, A. N. Temperature-induced valence transition and associated lattice collapse in samarium fulleride. Nature 425, 599–602 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Buchanan, R. M. & Pierpont, C. G. Tautomeric catecholate-semiquinone interconversion via metal-ligand electron transfer. Structural, spectral, and magnetic properties of (3,5-di-tert-butylcatecholato)-(3,5-di-tert-butylsemiquinone)-(bipyridyl)cobalt(III), a complex containing mixed-valence organic ligands. J. Am. Chem. Soc. 102, 4951–4957 (1980).

    Article  CAS  Google Scholar 

  19. Hendrickson, D. N. & Pierpont, C. G. Valence tautomeric transition metal complexes. Top. Curr. Chem. 234, 63–95 (2004).

    Article  CAS  Google Scholar 

  20. Gransbury, G. K. & Boskovic, C. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. Scott, R. A.) 1–24 (John Wiley, 2021).

  21. Fedushkin, I. L. et al. Genuine redox isomerism in a rare-earth-metal complex. Angew. Chem. Int. Ed. 51, 10584–10587 (2012).

    Article  CAS  Google Scholar 

  22. Fedushkin, I. L., Maslova, O. V., Baranov, E. V. & Shavyrin, A. S. Redox isomerism in the lanthanide complex [(dpp-bian)Yb(DME)(μ-Br)]2 (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene. Inorg. Chem. 48, 2355–2357 (2009).

  23. Pedersen, K. S. et al. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nat. Chem. 10, 1056–1061 (2018).

    Article  PubMed  CAS  Google Scholar 

  24. Perlepe, P. et al. Metal–organic magnets with large coercivity and ordering temperatures up to 242 °C. Science 370, 587–592 (2020).

    Article  PubMed  CAS  Google Scholar 

  25. Huang, Y. et al. Chemical tuning meets 2D molecular magnets. Adv. Mater. 35, 2208919 (2023).

    Article  CAS  Google Scholar 

  26. Huang, Y. et al. Pressure-controlled magnetism in 2D molecular layers. Nat. Commun. 14, 3186 (2023).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  27. Perlepe, P. et al. From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids. Nat. Commun. 13, 5766 (2022).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  28. Voigt, L., Kubus, M. & Pedersen, K. S. Chemical engineering of quasicrystal approximants in lanthanide-based coordination solids. Nat. Commun. 11, 4705 (2020).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Chen, H. et al. Magnetic Archimedean tessellations in metal–organic frameworks. J. Am. Chem. Soc. 143, 14041–14045 (2021).

    Article  PubMed  CAS  Google Scholar 

  30. Chen, H. et al. Towards frustration in Eu(II) Archimedean tessellations. Chem. Commun. 59, 1609–1612 (2023).

    Article  ADS  CAS  Google Scholar 

  31. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Kubus, M., Voigt, L. & Pedersen, K. S. Pentagonal-bipyramidal acetonitrile complexes of the lanthanide(II) iodides. Inorg. Chem. Commun. 114, 107819 (2020).

    Article  CAS  Google Scholar 

  34. Kaim, W. The versatile chemistry of 1,4-diazines: organic, inorganic and biochemical aspects. Angew. Chem. Int. Ed. 22, 171–190 (1983).

    Article  Google Scholar 

  35. Fieser, M. E. et al. Evaluating the electronic structure of formal LnII ions in LnII(C5H4SiMe3)31– using XANES spectroscopy and DFT calculations. Chem. Sci. 8, 6076–6091 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Deen, P. P. et al. Structural and electronic transitions in the low-temperature, high-pressure phase of SmS. Phys. Rev. B 71, 245118 (2005).

    Article  ADS  Google Scholar 

  37. Zasimov, P. et al. HERFD-XANES and RIXS study on the electronic structure of trivalent lanthanides across a series of isostructural compounds. Inorg. Chem. 61, 1817–1830 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Goodwin, C. A. P. et al. Heteroleptic samarium(III) halide complexes probed by fluorescence-detected L3-edge X-ray absorption spectroscopy. Dalton Trans. 47, 10613–10625 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fatila, E. M. et al. Ferromagnetic ordering of –[Sm(III)-radical]n– coordination polymers. Chem. Commun. 52, 5414–5417 (2016).

    Article  CAS  Google Scholar 

  40. Bonner, J. C. & Fisher, M. E. Linear magnetic chains with anisotropic coupling. Phys. Rev. 135, A640 (1964).

    Article  ADS  Google Scholar 

  41. Pan, Y.-Z. et al. A slowly magnetic relaxing SmIII monomer with a D5h equatorial compressed ligand field. Inorg. Chem. Front. 7, 2335–2342 (2020).

    Article  CAS  Google Scholar 

  42. Kiriya, D., Chang, H.-C. & Kitagawa, S. Molecule-based valence tautomeric bistability synchronized with a macroscopic crystal-melt phase transition. J. Am. Chem. Soc. 130, 5515–5522 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Lefter, C. et al. On the stability of spin crossover materials: from bulk samples to electronic devices. Polyhedron 102, 434–440 (2015).

    Article  CAS  Google Scholar 

  44. Jayaraman, A., Bucher, E., Dernier, P. D. & Longinotti, L. D. Temperature-induced explosive first-order electronic phase transition in Gd-doped SmS. Phys. Rev. Lett. 31, 700–703 (1973).

    Article  ADS  CAS  Google Scholar 

  45. Jayaraman, A. & Maines, R. G. Study of the valence transition in Eu-, Yb-, and Ca-substituted SmS under high pressure and some comments on other substitutions. Phys. Rev. B 19, 4154–4161 (1979).

    Article  ADS  CAS  Google Scholar 

  46. Kahn, O. & Jay Martinez, C. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  ADS  CAS  Google Scholar 

  47. Hay, M. A. & Boskovic, C. Lanthanoid complexes as molecular materials: the redox approach. Chem. Eur. J. 27, 3608–3637 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Walter, M. C., Booth, C. H., Lukes, W. W. & Andersen, R. A. Cerocene revisited: the electronic structure of and interconversion between Ce2(C8H8)3 and Ce(C8H8)2. Organometallics 28, 698–707 (2009).

    Article  CAS  Google Scholar 

  49. Booth, C. W. et al. Intermediate-valence tautomerism in decamethylytterbocene complexes of methyl-substituted bipyridines. J. Am. Chem. Soc. 49, 17537–17549 (2010).

    Article  Google Scholar 

  50. Sumino, Y., Harato, N., Tomisaka, Y. & Ogawa, A. A novel photoinduced reduction system of low-valent samarium species: reduction of organic halides and chalcogenides, and its application to carbonylation with carbon monoxide. Tetrahedron 59, 10499–10508 (2003).

    Article  CAS  Google Scholar 

  51. CrysalisPro (Agilent Technologies, 2014).

  52. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  53. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  54. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  ADS  CAS  Google Scholar 

  55. Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. The highscore suite. Powder Diffr. 29, S13–S18 (2014).

    Article  ADS  CAS  Google Scholar 

  56. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Article  Google Scholar 

  57. Pantazis, D. A. & Neese, F. All-electron scalar relativistic basis sets for the lanthanides. J. Chem. Theory Comput. 5, 2229–2238 (2009).

    Article  PubMed  CAS  Google Scholar 

  58. Rolfes, J. D., Neese, F. & Pantazis, D. A. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Comput. Chem. 41, 1842–1849 (2020).

    Article  PubMed  CAS  Google Scholar 

  59. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Pantazis, D. A. & Neese, F. All-electron scalar relativistic basis sets for the 6p elements. Theor. Chem. Acc. 131, 1292 (2012).

    Article  Google Scholar 

  61. Yamaguchi, K., Takahara, Y. & Fueno, T. in Applied Quantum Chemistry (eds Smith, V. H., Schaefer, H. F. & Morokuma, K.) 155–184 (D. Reidel, 1986).

  62. Yamanaka, S., Kawakami, T., Nagao, H. & Yamaguchi, K. Effective exchange integrals for open-shell species by density functional methods. Chem. Phys. Lett. 231, 25–33 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

K.S.P. thanks the VILLUM Foundation for a VILLUM Young Investigator+ (42094) grant, the Independent Research Fund Denmark for a DFF-Sapere Aude Starting grant (no. 0165-00073B) and the Carlsberg Foundation for a research infrastructure grant (no. CF17-0637). The X-ray spectroscopy experiments were performed at the ID12 beamline at the European Synchrotron Radiation Facility (Grenoble, France). We thank the Danish Agency for Science, Technology, and Innovation for funding the instrument centre Danscatt.

Author information

Authors and Affiliations

Authors

Contributions

K.S.P. and M.A.D. conceived and planned the research project. M.A.D., F.A. and A.S.M. developed and performed the synthesis and the crystallographic analysis. M.A.D., K.S.P. and J.B. performed the characterization of the magnetic properties. N.J.Y. and A.R. acquired and analysed the X-ray spectroscopic data. J.B. performed the DFT calculations. The manuscript was written by K.S.P. and M.A.D. with input from all coauthors. All authors have given their consent to the publication of the manuscript.

Corresponding authors

Correspondence to Maja A. Dunstan or Kasper S. Pedersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–4 and Discussion 1.

Supplementary Data 1

Crystallographic data for SmI2(pyz)3 at 230 K; CCDC reference 2285789.

Supplementary Data 2

Crystallographic data for SmI2(pyz)3 at 170 K; CCDC reference 2285788.

Supplementary Data 3

Crystallographic data for YbI2(pyz)3 at 230 K; CCDC reference 2300988.

Supplementary Data 4

Crystallographic data for YbI2(pyz)3 at 170 K; CCDC reference 2300987.

Supplementary Data 5

Crystallographic data for YbI2(pyz)3 at 120 K; CCDC reference 2285790.

Supplementary Data 5

Source Data for Supplementary Figs. 1, 2, 4, 5, 7 and 9–13.

Source data

Source Data Fig. 2

Source data for Fig. 2—magnetic data.

Source Data Fig. 3

Source data for Fig. 3—normalized XANES data.

Source Data Fig. 4

Source data for Fig. 4—magnetic data for solid solutions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunstan, M.A., Manvell, A.S., Yutronkie, N.J. et al. Tunable valence tautomerism in lanthanide–organic alloys. Nat. Chem. (2024). https://doi.org/10.1038/s41557-023-01422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-023-01422-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing