Skip to main content
Log in

Design of an Apodized Fiber Bragg Grating Sensor for Sensitivity Analysis of Physical Parameters using Support Vector Machine

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Fiber Bragg gratings (FBGs) are among the most utilized fiber optic sensors due to their high sensitivity toward physical parameters, which makes them preferable for various sensing applications. In this theoretical research work, an apodized FBG is designed to eliminate the side lobes from the reflectivity spectrum for the sensitivity estimation of physical parameters including temperature, strain, and pressure. Bragg wavelength changes due to the effects of measurands as FBG works on the principle of Bragg wavelength shift. The sensitivity of the measurand is measured by analyzing the changes that occur in the Bragg wavelength due to the impact of measurands. A strong linearity has been obtained for the sensitivity measurement of temperature, strain, and pressure for the designed apodized FBG. The Support vector machine (SVM), a supervised machine learning (ML) model, is implemented with different kernel functions for the predictive analysis of physical parameters for the credibility of the designed apodized FBG sensor to achieve improved sensing outcomes, particularly to work in a hazardous environment in case of any adverse scenario of any physical parameter. The predictive analysis performance of the SVM with RBF (radial basis function) kernel is observed better compared to the PUK (Pearson VII universal kernel) kernel as indicated by the high R2 value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The datasets implemented during this research work are available from the corresponding author as per the request.

References

  1. N. Sabri, S.A. Aljunid, M.S. Salim, S. Fouad, Fiber optic sensors: short review and applications. Springer Ser Mater Sci 204, 299–311 (2015). https://doi.org/10.1007/978-981-287-128-2_19

    Article  CAS  Google Scholar 

  2. N.F. Naim, S.N. Maslizan Sudin, S.S. Sarnin, Ya’acob N, Supian LS, Design of fiber bragg grating (FBG) temperature sensor based on optical frequency domain reflectometer (OFDR). Int J Electr Comput Eng 10(3), 3158–3165 (2020). https://doi.org/10.11591/ijece.v10i3.pp3158-3165

    Article  Google Scholar 

  3. K. Yao, Q. Lin, Z. Jiang, N. Zhao, B. Tian, G.D. Peng, Design and analysis of a combined FBG sensor for the measurement of three parameters. IEEE Trans. Instrum. Meas. 70, 7003010 (2021). https://doi.org/10.1109/TIM.2021.3066163

    Article  CAS  Google Scholar 

  4. K.M. Dwivedi, G. Trivedi, S.K. Khijwania, Fiber Bragg grating employing novel apodization profile: performance optimization for quasi-distributed sensing applications. Opt. Quantum Electron. 54(6), 1–17 (2022). https://doi.org/10.1007/s11082-022-03691-y

    Article  Google Scholar 

  5. A. Venketeswaran et al., Recent advances in machine learning for fiber optic sensor applications. Adv Intell Syst 4(1), 2100067 (1–24) (2022). https://doi.org/10.1002/aisy.202100067

    Article  Google Scholar 

  6. M. Kikuchi, T. Ogasawara, S. Fujii, S. Ichi Takeda, Application of machine learning for improved accuracy of simultaneous temperature and strain measurements of carbon fiber-reinforced plastic laminates using an embedded tilted fiber Bragg grating sensor. Compos Part A Appl Sci Manuf 161, 107108 (2022). https://doi.org/10.1016/j.compositesa.2022.107108

    Article  CAS  Google Scholar 

  7. A.Y.J. AKOSSOU, Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int J Math Comput 20(3), 84–93 (2013). ISSN 0974–570X (Online), ISSN 0974–5718 (Print)

    Google Scholar 

  8. M.M. Werneck, R.C.S.B. Allil, B.A. Ribeiro, F.V.B. de Nazaré, A guide to fiber Bragg grating sensors, in Current trends in short- and long-period fiber gratings. (InTech, 2013), pp. 1–24. https://doi.org/10.5772/54682

    Chapter  Google Scholar 

  9. H.N. Mandal, S. Sidhishwari, Predictive analysis on apodized FBG for quasi-distributed temperature-strain sensing. IEEE International Conference on Signal Processing and Communications (SPCOM) 2022, 1–5 (2022). https://doi.org/10.1109/SPCOM55316.2022.9840764

    Article  Google Scholar 

  10. S. Maske, P.B. Buchade, A.D. Shaligram, Characterization of fiber Bragg grating based on grating profile and apodization for sensor applications. AIP Conf Proc 1989, 020028 (1–7) (2018). https://doi.org/10.1063/1.5047704

    Article  Google Scholar 

  11. Ł Zychowicz, J. Klimek, P. Kisała, Methods of producing apodized fiber Bragg gratings and examples of their applications. Informatics Control Meas. Econ. Environ. Prot. 8(1), 60–63 (2018). https://doi.org/10.5604/01.3001.0011.6005

    Article  Google Scholar 

  12. B.S. Kawasaki, K.O. Hill, D.C. Johnson, Y. Fujii, Narrow-band Bragg reflectors in optical fibers. Opt. Lett. 3(2), 66–68 (1978). https://doi.org/10.1364/ol.3.000066

    Article  CAS  PubMed  ADS  Google Scholar 

  13. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978). https://doi.org/10.1063/1.89881

    Article  ADS  Google Scholar 

  14. E.A. Elzahaby, I. Kandas, M.H. Aly, Amendment performance of an apodized tilted fiber Bragg grating for a quasi-distributed-based sensor. Appl. Opt. 56(19), 5480–5488 (2017). https://doi.org/10.1364/ao.56.005480

    Article  CAS  PubMed  ADS  Google Scholar 

  15. C. Fahd, A. Otman, E.Y. Mounir, Performance investigation and enhancement of fiber Bragg gratingfor efficient sensing measurement. IOSR J. Electron. Commun. Eng. 12(02), 20–25 (2017). https://doi.org/10.9790/2834-1202012025

    Article  Google Scholar 

  16. M. Toba, F.M. Mustafa, T.M. Barakat, New simulation and analysis fiber bragg grating: Narrow bandwidth without side lobes. J. Phys. Commun. 4(7), 1–13 (2020). https://doi.org/10.1088/2399-6528/AB0600

    Article  Google Scholar 

  17. A.F. Sayed, F.M. Mustafa, A.A.M. Khalaf, M.H. Aly, Apodized chirped fiber Bragg grating for postdispersion compensation in wavelength division multiplexing optical networks. Int. J. Commun. Syst. 33(14), 1–13 (2020). https://doi.org/10.1002/dac.4551

    Article  Google Scholar 

  18. K.M.M. Prabhu, Review of window functions, in Window functions and their applications in signal processing. (CRC Press, Taylor & Francis Group, 2013), p. 94. https://doi.org/10.1201/9781315216386

    Chapter  Google Scholar 

  19. R. Kashyap, Theory of fiber Bragg gratings, in Fiber Bragg gratings. (Academic Press, 2010), pp. 119–187. https://doi.org/10.1016/b978-0-12-372579-0.00004-1

    Chapter  Google Scholar 

  20. J.K. Sahota, N. Gupta, D. Dhawan, Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Opt. Eng. 59(06), 1–35 (2020). https://doi.org/10.1117/1.oe.59.6.060901

    Article  CAS  Google Scholar 

  21. M.S. Engmann, M.S.E. Djurhuus, S. Werzinger, B. Schmauss, A.T. Clausen, D. Zibar, Machine learning assisted Fiber Bragg grating based temperature sensing”. IEEE Photonics Tech Lett 31, 12 (2019). https://doi.org/10.1109/LPT.2019.2913992

    Article  Google Scholar 

  22. X. Zhang, Strain dependence of fiber Bragg grating sensors at low temperature. Opt. Eng. 45(5), 054401 (2006). https://doi.org/10.1117/1.2202642

    Article  ADS  Google Scholar 

  23. I. Dhingra, G. Kaur, R.S. Kaler, Design and analysis of fiber Bragg grating sensor to monitor strain and temperature for structural health monitoring. Opt. Quantum Electron. 53(11), 1–12 (2021). https://doi.org/10.1007/s11082-021-03270-7

    Article  Google Scholar 

  24. K. Pereira, W. Coimbra, R. Lazaro, A. Frizera-Neto, C. Marques, A.G. Leal-Junior, FBG-based temperature sensors for liquid identification and liquid level estimation via random forest. Sensors 21, 4568 (2021). https://doi.org/10.3390/s21134568

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Y.J. Rao, In-fibre Bragg grating sensors. Meas. Sci. Technol. 8(4), 355–375 (1997). https://doi.org/10.1088/0957-0233/8/4/002

    Article  CAS  ADS  Google Scholar 

  26. T. Evgeniou, M. Pontil, Support vector machines: theory and applications. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2049, 249–257 (2001). https://doi.org/10.1007/3-540-44673-7_12

    Article  Google Scholar 

  27. M.T. Sattari, H. Apaydin, S.S. Band, A. Mosavi, R. Prasad, Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 25(2), 603–618 (2021). https://doi.org/10.5194/hess-25-603-2021

    Article  ADS  Google Scholar 

  28. X. Ding, J. Liu, F. Yang, J. Cao, Random radial basis function kernel-based support vector machine. J. Franklin Inst. 358(18), 10121–10140 (2021). https://doi.org/10.1016/j.jfranklin.2021.10.005

    Article  MathSciNet  Google Scholar 

  29. M.-C.N. Dicaire, J. Upham, I. De Leon, S.A. Schulz, R.W. Boyd, Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform. J. Opt. Soc. Am. B 31(5), 1006–1010 (2014). https://doi.org/10.1364/josab.31.001006

    Article  CAS  ADS  Google Scholar 

  30. V. Jain, S. Pawar, S. Kumbhaj, P.K. Sen, Analysis of dispersion characteristics of long period fiber grating. J. Phys. Conf. Ser. 755(012057), 1–4 (2016). https://doi.org/10.1088/1742-6596/755/1/012057

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Electronics and Communication Engineering (ECE), Birla Institute of Technology Mesra for extending all the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this research work.

Corresponding author

Correspondence to Himadri Nirjhar Mandal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, H.N., Sidhishwari, S. Design of an Apodized Fiber Bragg Grating Sensor for Sensitivity Analysis of Physical Parameters using Support Vector Machine. Braz J Phys 54, 58 (2024). https://doi.org/10.1007/s13538-024-01431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01431-z

Keywords

Navigation