Skip to main content
Log in

Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2022 Elsevier.

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang C, Park S. Nanomaterials-assisted thermally induced neuromodulation. Biomed Eng Lett 2021, 11: 163–170.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang S, Wu X, Rommelfanger NJ, Ou Z, Hong G. Shedding light on neurons: Optical approaches for neuromodulation. Natl Sci Rev 2022, 9: nwac007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014, 37: 387–407.

    Article  CAS  PubMed  Google Scholar 

  4. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond lesions and electrodes. Neurosurgery 2021, 89: 185–195.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sebesta C, Torres Hinojosa D, Wang B, Asfouri J, Li Z, Duret G. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat Mater 2022, 21: 951–958.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hescham SA, Chiang PH, Gregurec D, Moon J, Christiansen MG, Jahanshahi A, et al. Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice. Nat Commun 2021, 12: 5569.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science 2015, 347: 1477–1480.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wu S, Li H, Wang D, Zhao L, Qiao X, Zhang X, et al. Genetically magnetic control of neural system via TRPV4 activation with magnetic nanoparticles. Nano Today 2021, 39: 101187.

    Article  CAS  Google Scholar 

  10. Su CL, Cheng CC, Yen PH, Huang JX, Ting YJ, Chiang PH. Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation. Commun Biol 2022, 5: 1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee JU, Shin W, Lim Y, Kim J, Kim WR, Kim H, et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat Mater 2021, 20: 1029–1036.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011, 34: 389–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karl D. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015, 18: 1213–1225.

    Article  Google Scholar 

  14. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.

    Article  CAS  PubMed  Google Scholar 

  15. Häusser M. Optogenetics - the might of light. N Engl J Med 2021, 385: 1623–1626.

    Article  PubMed  Google Scholar 

  16. Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, et al. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2022, 54: 202–216.

    Article  PubMed  Google Scholar 

  17. Guo F, Du Y, Qu FH, Lin SD, Chen Z, Zhang SH. Dissecting the neural circuitry for pain modulation and chronic pain: Insights from optogenetics. Neurosci Bull 2022, 38: 440–452.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fougère M, van der Zouwen CI, Boutin J, Neszvecsko K, Sarret P, Ryczko D. Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2021, 118: e2110934118.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Etter G, van der Veldt S, Manseau F, Zarrinkoub I, Trillaud-Doppia E, Williams S. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model. Nat Commun 2019, 10: 5322.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Choi S, Hachisuka J, Brett MA, Magee AR, Omori Y, Iqbal NUA, et al. Parallel ascending spinal pathways for affective touch and pain. Nature 2020, 587: 258–263.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, et al. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023, 42: 112069.

    Article  CAS  PubMed  Google Scholar 

  22. Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat. Biomed Eng 2023, 7: 349–369.

    Google Scholar 

  23. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 2002, 47: 2059–2073.

    Article  CAS  PubMed  Google Scholar 

  24. Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med 2015, 47: 312–322.

    Article  PubMed  Google Scholar 

  25. Li T, Xue C, Wang P, Li Y, Wu L. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study. J Innov Opt Health Sci 2017, 10: 1743002.

    Article  Google Scholar 

  26. Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007, 10: 549–551.

    Article  CAS  PubMed  Google Scholar 

  27. Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005, 148: 1–18.

    Article  PubMed  Google Scholar 

  28. Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015, 12: 969–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. All AH, Zeng X, Teh DBL, Yi Z, Prasad A, Ishizuka T, et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv Mater 2019, 31: e1803474.

    Article  PubMed  Google Scholar 

  30. Wu X, Jiang Y, Rommelfanger NJ, Yang F, Zhou Q, Yin R, et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat Biomed Eng 2022, 6: 754–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang Y, Huang Y, Luo X, Wu J, Zong H, Shi L, et al. Neural stimulation in vitro and in vivo by photoacoustic nanotransducers. Matter 2021, 4: 654–674.

    Article  CAS  Google Scholar 

  32. Parameswaran R, Carvalho-de-Souza JL, Jiang Y, Burke MJ, Zimmerman JF, Koehler K, et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat Nanotechnol 2018, 13: 260–266.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen B, Cui M, Wang Y, Shi P, Wang H, Wang F. Recent advances in cellular optogenetics for photomedicine. Adv Drug Deliv Rev 2022, 188: 114457.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang F, Prigge M, Beyrière F, Tsunoda SP, Mattis J, Yizhar O, et al. Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008, 11: 631–633.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477: 171–178.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. mBio 2011, 2: e00115-e111.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013, 16: 1499–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014, 11: 338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, et al. Cortical layer-specific critical dynamics triggering perception. Science 2019, 365: eaaw5202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen R, Gore F, Nguyen QA, Ramakrishnan C, Patel S, Kim SH, et al. Deep brain optogenetics without intracranial surgery. Nat Biotechnol 2021, 39: 161–164.

    Article  CAS  PubMed  Google Scholar 

  41. Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 2022, 185: 672-689.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: Optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007, 8: 577–581.

    Article  CAS  PubMed  Google Scholar 

  43. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010, 141: 154–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chuong AS, Miri ML, Busskamp V, Matthews GAC, Acker LC, Sørensen AT, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014, 17: 1123–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci U S A 2020, 117: 22833–22840.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, et al. The microbial opsin family of optogenetic tools. Cell 2011, 147: 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karasuyama M, Inoue K, Nakamura R, Kandori H, Takeuchi I. Understanding colour tuning rules and predicting absorption wavelengths of microbial rhodopsins by data-driven machine-learning approach. Sci Rep 2018, 8: 15580.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Inoue K, Karasuyama M, Nakamura R, Konno M, Yamada D, Mannen K, et al. Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design. Commun Biol 2021, 4: 362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bedbrook CN, Yang KK, Robinson JE, MacKey ED, Gradinaru V, Arnold FH. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat Methods 2019, 16: 1176–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin JY. A user’s guide to channelrhodopsin variants: Features, limitations and future developments. Exp Physiol 2011, 96: 19–25.

    Article  PubMed  Google Scholar 

  51. Gong X, Mendoza-Halliday D, Ting JT, Kaiser T, Sun X, Bastos AM, et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 2020, 107: 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, et al. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. Nanoscale 2022, 14: 7123–7136.

    Article  CAS  PubMed  Google Scholar 

  53. Ma Y, Bao J, Zhang Y, Li Z, Zhou X, Wan C, et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 2019, 177: 243-255.e15.

    Article  CAS  PubMed  Google Scholar 

  54. Luo DG, Yue WWS, Ala-Laurila P, Yau KW. Activation of visual pigments by light and heat. Science 2011, 332: 1307–1312.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ala-Laurila P, Albert RJ, Saarinen P, Koskelainen A, Donner K. The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties. Vis Neurosci 2003, 20: 411–419.

    Article  PubMed  Google Scholar 

  56. Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2004, 104: 139–173.

    Article  CAS  PubMed  Google Scholar 

  57. Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 2011, 23: 2675–2680.

    Article  CAS  PubMed  Google Scholar 

  58. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 2009, 38: 976–989.

    Article  CAS  PubMed  Google Scholar 

  59. Yi Z, All AH, Liu X. Upconversion nanoparticle-mediated optogenetics. Adv Exp Med Biol 2021, 1293: 641–657.

    Article  CAS  PubMed  Google Scholar 

  60. Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun 2018, 9: 2415.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Qin X, Xu J, Wu Y, Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent Sci 2019, 5: 29–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meir R, Hirschhorn T, Kim S, Fallon KJ, Churchill EM, Wu D, et al. Photon upconversion hydrogels for 3D optogenetics. Adv Funct Materials 2021, 31: 2010907.

    Article  CAS  Google Scholar 

  63. Liu Y, Yi Z, Yao Y, Guo B, Liu X. Noninvasive manipulation of ion channels for neuromodulation and theranostics. Acc Mater Res 2022, 3: 247–258.

    Article  CAS  Google Scholar 

  64. Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543: 229–233.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Fu X, Fu S, Lu Q, Zhang J, Wan P, Liu J, et al. Excitation energy mediated cross-relaxation for tunable upconversion luminescence from a single lanthanide ion. Nat Commun 2022, 13: 4741.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan Q, Sun C, Hu B, Wang Q. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Mater Today Bio 2023, 20: 100646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dong H, Sun LD, Yan CH. Lanthanide-doped upconversion nanoparticles for super-resolution microscopy. Front Chem 2021, 8: 619377.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Deisseroth K, Anikeeva P. Upconversion of light for use in optogenetic methods: U.S. Patent 9,522,288[P]. 2016-12-20.

  69. Shah S, Liu JJ, Pasquale N, Lai J, McGowan H, Pang ZP, et al. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 2015, 7: 16571–16577.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bansal A, Liu H, Jayakumar MKG, Andersson-Engels S, Zhang Y. Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small 2016, 12: 1732–1743.

    Article  CAS  PubMed  Google Scholar 

  71. Ai X, Lyu L, Zhang Y, Tang Y, Mu J, Liu F, et al. Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals. Angew Chem Int Ed Engl 2017, 56: 3031–3035.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Lin X, Chen X, Chen X, Xu Z, Zhang W, et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 2017, 142: 136–148.

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Xie K, Yue H, Chen X, Luo X, Liao Q, et al. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Nanoscale 2020, 12: 2406–2414.

    Article  CAS  PubMed  Google Scholar 

  74. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359: 679–684.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Miyazaki T, Chowdhury S, Yamashita T, Matsubara T, Yawo H, Yuasa H, et al. Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Rep 2019, 26: 1033-1043.e5.

    Article  CAS  PubMed  Google Scholar 

  76. Mei Q, Bansal A, Jayakumar MKG, Zhang Z, Zhang J, Huang H, et al. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nat Commun 2019, 10: 4416.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Liu X, Chen H, Wang Y, Si Y, Zhang H, Li X, et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. Nat Commun 2021, 12: 5662.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin X, Sun T, Tang M, Yang A, Yan-Do R, Chen D, et al. 3D upconversion barcodes for combinatory wireless neuromodulation in behaving animals. Adv Healthc Mater 2022, 11: e2200304.

    Article  PubMed  Google Scholar 

  79. Yan J, Wan Y, Ji Z, Li C, Tao C, Tang Y, et al. Motor neuron-specific membrane depolarization of transected peripheral nerves by upconversion nanoparticle-mediated optogenetics. Adv Funct Materials 2023, 33: 2303992.

    Article  CAS  Google Scholar 

  80. Matsubara T, Yamashita T. Remote optogenetics using up/down-conversion phosphors. Front Mol Biosci 2021, 8: 771717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen J, Gong M, Fan Y, Feng J, Han L, Xin HL, et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 2022, 16: 910–920.

    Article  CAS  PubMed  Google Scholar 

  82. Kokalari I, Keshavan S, Rahman M, Gazzano E, Barzan G, Mandrile L, et al. Efficacy, biocompatibility and degradability of carbon nanoparticles for photothermal therapy of lung cancer. Nanomedicine 2021, 16: 689–707.

    Article  CAS  PubMed  Google Scholar 

  83. Wang W, Zhang X, Ni X, Zhou W, Xie C, Huang W, et al. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomater Sci 2022, 10: 846–853.

    Article  CAS  PubMed  Google Scholar 

  84. Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, et al. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16: 100144.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fan R, Chen C, Hou H, Chuan D, Mu M, Liu Z, et al. Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv Funct Materials 2021, 31: 2009733.

    Article  CAS  Google Scholar 

  86. Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Tec 2021, 61: 101830.

    Article  CAS  Google Scholar 

  87. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004, 209: 171–176.

    Article  PubMed  Google Scholar 

  88. Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021, 50: 1111–1137.

    Article  CAS  PubMed  Google Scholar 

  89. Yin C, Li X, Wang Y, Liang Y, Zhou S, Zhao P, et al. Organic semiconducting macromolecular dyes for NIR-II photoacoustic imaging and photothermal therapy. Adv Funct Materials 2021, 31: 2104650.

    Article  CAS  Google Scholar 

  90. Zhen X, Pu K, Jiang X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small 2021, 17: e2004723.

    Article  PubMed  Google Scholar 

  91. Carvalho-de-Souza JL, Pinto BI, Pepperberg DR, Bezanilla F. Optocapacitive generation of action potentials by microsecond laser pulses of nanojoule energy. Biophys J 2018, 114: 283–288.

    Article  CAS  PubMed  Google Scholar 

  92. Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F. Infrared light excites cells by changing their electrical capacitance. Nat Commun 2012, 3: 736.

    Article  ADS  PubMed  Google Scholar 

  93. Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015, 86: 207–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang Y, Li X, Liu B, Yi J, Fang Y, Shi F, et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng 2018, 2: 508–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: Molecular sensors for temperature detection. Phys Biol 2018, 15: 021001.

    Article  PubMed  Google Scholar 

  96. Hilton JK, Kim M, Van Horn WD. Structural and evolutionary insights point to allosteric regulation of TRP ion channels. Acc Chem Res 2019, 52: 1643–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Randhawa PK, Jaggi AS. TRPV1 and TRPV4 channels: Potential therapeutic targets for ischemic conditioning-induced cardioprotection. Eur J Pharmacol 2015, 746: 180–185.

    Article  CAS  PubMed  Google Scholar 

  98. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389: 816–824.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 2013, 504: 113–118.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 504: 107–112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc Natl Acad Sci U S A 2016, 113: 11342–11347.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Luo L, Wang Y, Li B, Xu L, Kamau PM, Zheng J, et al. Molecular basis for heat desensitization of TRPV1 ion channels. Nat Commun 2019, 10: 2134.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yao J, Liu B, Qin F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 2011, 108: 11109–11114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kauer JA, Gibson HE. Hot flash: TRPV channels in the brain. Trends Neurosci 2009, 32: 215–224.

    Article  CAS  PubMed  Google Scholar 

  105. Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y, Imahori H, et al. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew Chem Int Ed Engl 2015, 54: 11725–11729.

    Article  CAS  PubMed  Google Scholar 

  106. Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J Am Chem Soc 2016, 138: 9049–9052.

    Article  CAS  PubMed  Google Scholar 

  107. Nelidova D, Morikawa RK, Cowan CS, Raics Z, Goldblum D, Scholl HPN, et al. Restoring light sensitivity using tunable near-infrared sensors. Science 2020, 368: 1108–1113.

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Ge X, Fu Q, Bai L, Chen B, Wang R, Gao S, et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window. New J Chem 2019, 43: 8835–8851.

    Article  CAS  Google Scholar 

  109. Lei Z, Zhang W, Li B, Guan G, Huang X, Peng X, et al. A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window photothermal therapy. Nanoscale 2019, 11: 20161–20170.

    Article  CAS  PubMed  Google Scholar 

  110. Wang C, Dai C, Hu Z, Li H, Yu L, Lin H, et al. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. Nanoscale Horiz 2019, 4: 415–425.

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Liu J, Li J, Zhang S, Ding M, Yu N, Li J, et al. Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats. Nano Converg 2022, 9: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoo S, Hong S, Choi Y, Park JH, Nam Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 2014, 8: 8040–8049.

    Article  CAS  PubMed  Google Scholar 

  113. An Y, Nam Y. Closed-loop control of neural spike rate of cultured neurons using a thermoplasmonics-based photothermal neural stimulation. J Neural Eng 2021, 18. doi: https://doi.org/10.1088/1741-2552/ac3265.

  114. Gholami Derami H, Gupta P, Weng KC, Seth A, Gupta R, Silva JR, et al. Reversible Photothermal Modulation of Electrical Activity of Excitable Cells using Polydopamine Nanoparticles. Adv Mater 2021, 33: e2008809.

    Article  PubMed  Google Scholar 

  115. Liu X, Qiao Z, Chai Y, Zhu Z, Wu K, Ji W, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation. Proc Natl Acad Sci U S A 2021, 118: e2015685118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, et al. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat Commun 2021, 12: 2730.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, et al. Virally delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Mouse Models of Blindness. Mol Ther 2011, 19: 1220–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sugano E, Isago H, Wang Z, Murayama N, Tamai M, Tomita H. Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy. Gene Ther 2011, 18: 266–274.

    Article  CAS  PubMed  Google Scholar 

  119. Chow BY, Boyden ES. Optogenetics and translational medicine. Sci Transl Med 2013, 5: 177ps5.

    Article  PubMed  Google Scholar 

  120. Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020, 472: 527–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017, 20: 1172–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rzechorzek NM, Thrippleton MJ, Chappell FM, Mair G, Ercole A, Cabeleira M, et al. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain 2022, 145: 2031–2048.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Owen SF, Liu MH, Kreitzer AC. Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci 2019, 22: 1061–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaiser M, Würth C, Kraft M, Hyppänen I, Soukka T, Resch-Genger U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano- and micrometer-sized particles - measurements and simulations. Nanoscale 2017, 9: 10051–10058.

    Article  CAS  PubMed  Google Scholar 

  125. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem Soc Rev 2015, 44: 1379–1415.

    Article  CAS  PubMed  Google Scholar 

  126. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 2011, 9: 159–172.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med 2021, 27: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  128. Harris AR, Gilbert F. Restoring vision using optogenetics without being blind to the risks. Graefes Arch Clin Exp Ophthalmol 2022, 260: 41–45.

    Article  PubMed  Google Scholar 

  129. Gao W, Sun Y, Cai M, Zhao Y, Cao W, Liu Z, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 2018, 9: 231.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  130. Ma Z, Zhang J, Zhang W, Foda MF, Zhang Y, Ge L, et al. Intracellular Ca2+ cascade guided by NIR-II photothermal switch for specific tumor therapy. iScience 2020, 23: 101049.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bartley AF, Fischer M, Bagley ME, Barnes JA, Burdette MK, Cannon KE, et al. Feasibility of cerium-doped LSO particles as a scintillator for X-ray induced optogenetics. J Neural Eng 2021, 18: https://doi.org/10.1088/1741. https://doi.org/10.1088/2552/abef89.

  132. Sun F, Shen H, Yang Q, Yuan Z, Chen Y, Guo W, et al. Dual behavior regulation: Tether-free deep-brain stimulation by photothermal and upconversion hybrid nanoparticles. Adv Mater 2023, 35: e2210018.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported by China Postdoctoral Science Foundation (2022M723356), "From 0 to 1" Original Innovation Project of the Basic Frontier Scientific Research Program of the Chinese Academy of Sciences (29J20-015-III), Chinese Academy of Sciences 100 Talents Project: Research on Task oriented Functional Brain Development of Infants (29J20-052-III) and Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Fan, Q., Xie, R. et al. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01179-1

Keywords

Navigation