Skip to main content
Log in

Nanoscale Reorganization of Glutamate Receptors Underlies Synaptic Plasticity and Pathology

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Gou XZ, Ramsey AM, Tang AH. Re-examination of the determinants of synaptic strength from the perspective of superresolution imaging. Curr Opin Neurobiol 2022, 74: 102540.

    Article  CAS  PubMed  Google Scholar 

  2. Nair D, Hosy E, Petersen JD, Constals A, Giannone G, Choquet D. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 2013, 33: 13204–13224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 2016, 536: 210–214.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 2018, 7: e31755.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, et al. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Sci Adv 2021, 7: eabf3126.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han Y, Cao R, Qin L, Chen LY, Tang AH, Südhof TC, et al. Neuroligin-3 confines AMPA receptors into nanoclusters, thereby controlling synaptic strength at the calyx of Held synapses. Sci Adv 2022, 8: eabo4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lloyd BA, Han Y, Roth R, Zhang B, Aoto J. Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus. Nat Commun 2023, 14: 4706.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sinnen BL, Bowen AB, Forte JS, Hiester BG, Crosby KC, Gibson ES, et al. Optogenetic control of synaptic composition and function. Neuron 2017, 93: 646-660.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hruska M, Henderson N, Le Marchand SJ, Jafri H, Dalva MB. Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat Neurosci 2018, 21: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li S, Raychaudhuri S, Lee SA, Brockmann MM, Wang J, Kusick G, et al. Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. Nat Commun 2021, 12: 677.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goncalves J, Bartol TM, Camus C, Levet F, Menegolla AP, Sejnowski TJ, et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc Natl Acad Sci U S A 2020, 117: 14503–14511.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kellermayer B, Ferreira JS, Dupuis J, Levet F, Grillo-Bosch D, Bard L, et al. Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron 2018, 100: 106-119.e7.

    Article  CAS  PubMed  Google Scholar 

  13. Ferreira JS, Dupuis JP, Kellermayer B, Bénac N, Manso C, Bouchet D, et al. Distance-dependent regulation of NMDAR nanoscale organization along hippocampal neuron dendrites. Proc Natl Acad Sci U S A 2020, 117: 24526–24533.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, et al. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020, 18: e3000665.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Scheefhals N, Westra M, MacGillavry HD. mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun 2023, 14: 244.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka J, Nakagawa S, Kushiya E, Yamasaki M, Fukaya M, Iwanaga T, et al. Gq protein alpha subunits Galphaq and Galpha11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur J Neurosci 2000, 12: 781–792.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Zhang C, Vincent J, Zala D, Benstaali C, Sainlos M, et al. Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington’s disease models. Nat Commun 2018, 9: 4272.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Aloisi E, Le Corf K, Dupuis J, Zhang P, Ginger M, Labrousse V, et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun 2017, 8: 1103.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Zhu WH, Yang XX, Gou XZ, Fu SM, Chen JH, Gao F, et al. Nanoscale reorganisation of synaptic proteins in Alzheimer’s disease. Neuropathol Appl Neurobiol 2023, 49: e12924.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Wei J, Ma X, Xia B, Shakir N, Zhang JK, et al. Disrupted maturation of prefrontal layer 5 neuronal circuits in an Alzheimer’s mouse model of amyloid deposition. Neurosci Bull 2023, 39: 881–892.

    Article  CAS  PubMed  Google Scholar 

  21. Ladépêche L, Planagumà J, Thakur S, Suárez I, Hara M, Borbely JS, et al. NMDA receptor autoantibodies in autoimmune encephalitis cause a subunit-specific nanoscale redistribution of NMDA receptors. Cell Rep 2018, 23: 3759–3768.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This insight was supported by the STI2030-Major Project (2021ZD0202503), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39010700), the China Postdoctoral Science Foundation (2021M703089), and the Fundamental Research Funds from the University of Science and Technology of China (WK9110000141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Hui Chen or Ai-Hui Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Tang, AH. Nanoscale Reorganization of Glutamate Receptors Underlies Synaptic Plasticity and Pathology. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01180-8

Navigation