Skip to main content
Log in

Luminescence and temperature properties of Y2O3: Ho3+/Yb3+ millimeter crystals obtained by laser annealing

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

FIR temperature measurement based on thermally coupled levels of rare earth ions has been widely studied, but its sensitivity is limited by the thermal coupling levels’ spacing. In this letter, a transition from non-thermally coupled levels of Ho3+ to thermally coupled levels is reported for the first time. It can effectively improve the sensitivity of temperature measurement based on thermal coupling levels. The Ho3+/Yb3+ co-doped Y2O3 millimeter crystals have been prepared by laser annealing. The fluorescence properties of laser-annealed Ho3+/Yb3+ co-doped Y2O3 millimeter crystals were investigated as a function of temperature. It was found that the I667nm/I549nm show non-thermal coupling below 453K, but changes to thermal coupling above 453K. The maximum relative sensitivity of I667nm/I549nm in thermal coupling is greater than the relative sensitivity of any known thermal coupling energy levels of Ho3+. It provides a new way to improve the sensitivity of thermally coupled FIR temperature measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during this work are available from the corresponding author upon reasonable request.

References

  1. J.C. Zhang, Q.S. Qin, M.H. Yu, Chin. Phys. Lett. 027802, 28 (2011)

    Google Scholar 

  2. X.Z. Wang, Y.S. Wang, Spectrosc. Spect. Anal. 26, 399–402 (2006)

    Google Scholar 

  3. S.P. Horvath, M.F. Reid, J. Wells, J. Lumin. 169, 773–776 (2015)

    Article  Google Scholar 

  4. S.S. Wang, H. Zhou, X.X. Wang, J. Phys. Chem. Solids 98, 28–31 (2016)

    Article  ADS  Google Scholar 

  5. V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077–2084 (2009)

    Article  Google Scholar 

  6. C. Louis, R. Bazzi, C.A. Marquett, Chem. Mater. 17, 1673–1682 (2005)

    Article  Google Scholar 

  7. J. Riegler, T. Nann, Anal. Bioanal. Chem. 379, 913–919 (2004)

    Article  Google Scholar 

  8. R. Bao, L. Yu, L. Ye, Sens. Actuator A Phys. 269, 182–187 (2018)

    Article  Google Scholar 

  9. X. Hou, S. Zhou, T. Jia, Physica B Condens. Matter 406, 3931–3937 (2011)

    Article  ADS  Google Scholar 

  10. T. Biljan, A. Gajovic, Z. Meic, J. Alloys Compd. 431, 217–220 (2007)

    Article  Google Scholar 

  11. K. Vineet, Z. Brandon, M. Paul, Dalton Trans. 47, 11158–11165 (2018)

    Article  Google Scholar 

  12. Y.Y. Guo, D.Y. Wang, Y. He, J. Alloys Compd. 741, 1158–1162 (2018)

    Article  Google Scholar 

  13. L. Laversenne, Y. Guyot, C. Goutaudier, Opt. Mater. 16, 1158–1162 (2001)

    Article  Google Scholar 

  14. A. Ubaldini, M. Carnasciali, J. Alloys Compd. 454, 374–378 (2008)

    Article  Google Scholar 

  15. Q. Feng, Z. Hua, C. Wei, Appl. Phys. Lett. 108, 241907 (2016)

    Article  Google Scholar 

  16. R. Marcin, B. Aleksandra, M. Monika, J. Lumin. 201, 104–109 (2018)

    Article  Google Scholar 

  17. P. Lixin, Z. Yuan, Q. Feng, Opt. Lett. 46, 5818–5821 (2021)

    Article  ADS  Google Scholar 

  18. M.D. Dramićani, Ž Antić, Nanotechnology 25, 485501 (2014)

    Article  Google Scholar 

  19. R. Yun, J.Q. He, L. Luo, X.H. Liu, Ceram. Int. 47, 16062–16069 (2021)

    Article  Google Scholar 

  20. M. Zacharias, P.C. Kelires, Phys. Rev. B 101, 245122 (2020)

    Article  ADS  Google Scholar 

  21. L. Robert, Defect and microstructure analysis by diffraction (Oxford University Press, Oxford, 1999)

    Google Scholar 

  22. A. Bednarkiewicz, D. Wawrzynczyk, Nanotechnology 23, 145705 (2012)

    Article  ADS  Google Scholar 

  23. L. Xu, J. Zhang, D. Gao, Nanotechnology 30, 435703 (2019)

    Article  Google Scholar 

  24. A. Kumar, J. Manam, Opt. Mater. 96, 109373 (2019)

    Article  Google Scholar 

  25. E. De, P. Salas, H. Desirena, Appl. Phys. Lett. 87, 241912 (2005)

    Article  ADS  Google Scholar 

  26. D. Yawen, Y. Yan, Z. Shuai, Opt. Mater. 135, 113270 (2023)

    Article  Google Scholar 

  27. M. Pollnau, D.R. Gamelin, S.R. Lüthi, Phys. Rev. B 61, 3337 (2000)

    Article  ADS  Google Scholar 

  28. A. Polman, Appl. Phys. 82, 1–39 (1997)

    Article  Google Scholar 

  29. A. Roy, H. Dwivedi, Mishra. J. Alloys Compd. 865, 158938 (2021)

    Article  Google Scholar 

  30. L. Songbin, Y. Xinyu, L. Shuifu, J. Am. Ceram. Soc. 100, 3530–3539 (2017)

    Article  Google Scholar 

  31. G. Linna, W. Yuhua, Nanoscale Res. Lett. 7, 636–636 (2012)

    Article  ADS  Google Scholar 

  32. W. Chuanlong, J. Yahong, J. Alloys Compd. 894, 162494 (2022)

    Article  Google Scholar 

  33. H. Li, Y. Zhang, L. Shao, Opt. Mater. 7(8), 3003–3010 (2017)

    Article  Google Scholar 

  34. X. Wang, Q. Liu, Opt. Mater. 24(16), 17792–17804 (2016)

    ADS  Google Scholar 

  35. A. Kumar, J. Manam, J. Alloys Compd. 829, 154610 (2020)

    Article  Google Scholar 

  36. S.K. Singh, K. Kumar, S.B. Rai, Appl. Phys. B 94, 165–173 (2009)

    Article  ADS  Google Scholar 

  37. A.R.C. Márcio, G.S. Maciel, Appl. Phys. Lett. 84, 4753–4755 (2004)

    Article  ADS  Google Scholar 

  38. R. Dey, A. Kumari, A.K. Soni, Sens. Actuators B Chem. 210, 581–588 (2015)

    Article  Google Scholar 

  39. P. Singh, K.P. Shahi, A. Rai, Opt. Mater. 58, 432–438 (2016)

    Article  ADS  Google Scholar 

  40. H. Bofei, J. Mochen, L. Panpan, J. Am. Chem. Soc. 58, 7939–7946 (2019)

    Google Scholar 

  41. H. Aiguo, Z. Xi, L. Xiaojuan, W. Long, J. Alloys Compd. 803, 450–455 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work is support by the Science and Technology Research Program of Chongqing Education Commission of (KJQN202201403). The University Innovation Research Group of Shale Gas Optical Fiber Intelligent Sensing Technology (CXQT20027). Co-operative Projects between Undergraduate Universities in Chongqing and Institutes affiliated with Chinese Academy of Sciences (HZ2021014). “New Generation of Information Technology Innovation Project” sponsored by China University Innovation Fund (2021ITA04001).

Author information

Authors and Affiliations

Authors

Contributions

Qiu-Yue Ran: Investigation, Validation, Experiment, Paper writing, Paper revision, Software. Yu-Long Lian: Conceptualization, Experiment, Writing-original draft, Software. Yong Tang: Data curation, Visualization, Software, Writing-review & editing. Jian-Hong Hao: Investigation, Resources. Yun-Feng Bai: Conceptualization, Formal analysis, Funding acquisition, Methodology, Writing-review & editing.

Corresponding author

Correspondence to Yun-Feng Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, QY., Lian, YL., Tang, Y. et al. Luminescence and temperature properties of Y2O3: Ho3+/Yb3+ millimeter crystals obtained by laser annealing. Appl. Phys. B 130, 38 (2024). https://doi.org/10.1007/s00340-024-08181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08181-5

Navigation