Skip to main content

Advertisement

Log in

Decoding the mitochondria without a code: mechanistic insights into mitochondrial DNA depletion syndromes

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Mitochondrial DNA depletion syndromes (MDS) encompass a wide spectrum of rare genetic disorders caused by severe reduction in mitochondrial DNA (mtDNA), and exhibit heterogenous phenotypes classified as myopathic, encephalomyopathic, hepatocerebral, and neurogastrointestinal. Prognosis for such a spectrum of diseases is poor and is majorly dependent on symptomatic treatment and nutritional supplementation. Understanding the mechanistic aspect of mtDNA depletion can help bring forth a new era of medicine, moving beyond symptomatic treatment and focusing more on organelle-targeted therapies. In this review, we highlight some of the proposed mechanistic bases of mtDNA depletion and the latest therapeutic measures used to treat MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aasumets K, Basikhina Y, Pohjoismäki JL, et al. 2021 TFAM knockdown-triggered mtDNA-nucleoid aggregation and a decrease in mtDNA copy number induce the reorganization of nucleoid populations and mitochondria-associated ER-membrane contacts. Biochem. Biophys. Rep. 28 101142

    PubMed  PubMed Central  CAS  Google Scholar 

  • Abrisch RG, Gumbin SC, Wisniewski BT, et al. 2020 Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219 201911122

    Article  Google Scholar 

  • Bakker JA, Schlesser P, Smeets HJM, et al. 2010 Biochemical abnormalities in a patient with thymidine phosphorylase deficiency with fatal outcome. J. Inherit. Metab. Dis. 33 146–149

    Article  Google Scholar 

  • Ban-Ishihara R, Ishihara T, Sasaki N, et al. 2013 Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. PNAS 110

  • Bendich AJ 2013 DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Res. 21 297–312

    Article  Google Scholar 

  • Blakely E, He L, Gardner JL, et al. 2008 Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscul. Disord. 18 659–661

    Article  Google Scholar 

  • Blázquez-Bermejo C, Carreño-Gago L, Molina-Granada D, et al. 2019 Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts. FASEB J. 33 7239–7254

    Article  Google Scholar 

  • Bonnen PE, Yarham JW, Besse A, et al. 2013 Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am. J. Hum. Genet. 93 471–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogenhagen D and Clayton DA 1978 Mechanism of mitochondrial DNA replication in mouse L-cells: Kinetics of synthesis and turnover of the initiation sequence. J. Mol. Biol. 119 49–68

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Rousseau D and Burke S 2008 The Layered Structure of Human Mitochondrial DNA Nucleoids. J. Biol. Chem. 283 3665–3675

    Article  PubMed  CAS  Google Scholar 

  • Bottani E, Giordano C, Civiletto G, et al. 2014 AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol. Ther. 22 52–61

    Article  Google Scholar 

  • Brown TA and Clayton DA 2002 Release of replication termination controls mitochondrial DNA copy number after depletion with 2′,3′-dideoxycytidine. Nucleic Acids Res. 30 2004–2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulst S, Holinski-Feder E, Payne B, et al. 2012 In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Mol. Genet. Metab. 107 92–96

    Article  Google Scholar 

  • Cámara Y, González-Vioque E, Scarpelli M, et al. 2014 Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 23 2459–2467

    Article  PubMed  Google Scholar 

  • Camp KM, Krotoski D, Parisi MA, et al. 2016 Nutritional interventions in primary mitochondrial disorders: Developing an evidence base. Mol. Genet. Metab. 119 212–221

    Article  Google Scholar 

  • Chan SSL and Copeland WC 2009 DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations. Biochim. Biophys. Acta, 1787 312

  • Chen H, McCaffery JM, Chan DC, et al. 2007 Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130 548–562

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu T, Tran A, et al. 2012 OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc. 1 e003012

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton DA 2003 Replication and transcription of vertebrate mitochondrial DNA. Ann. Rev. Cell Dev. Biol. 7 453–478

    Article  Google Scholar 

  • Dalla Rosa I, Cámara Y, Durigon R, et al. 2016 MPV17 Loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet. 12 e1005779

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo R, Boschetti E, Amore G, et al. 2020 Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical long-term follow-up and pathogenic implications. J. Neurol. 267 3107–3117

    Article  Google Scholar 

  • D’Angelo R, Rinaldi R, Pironi L, et al. 2017 Liver transplant reverses biochemical imbalance in mitochondrial neurogastrointestinal encephalomyopathy. Mitochondrion 34 50–55

    Google Scholar 

  • Davis AF and Clayton DA 1996 In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135 883–893

    Article  PubMed  CAS  Google Scholar 

  • Dua N, Seshadri A, Badrinarayanan A 2022 DarT-mediated mtDNA damage induces dynamic reorganization and selective segregation of mitochondria. J. Cell Biol., 221

  • De Giorgio R, Pironi L, Rinaldi R, et al. 2016 Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann. Neurol. 80 448–455

    Article  Google Scholar 

  • Desgranges C, Razaka G, Rabaud M, et al. 1981 Catabolism of thymidine in human blood platelets purification and properties of thymidine phosphorylase. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 654 211–218

    Article  CAS  Google Scholar 

  • Domínguez-González C, Madruga-Garrido M, Mavillard F, et al. 2019 Deoxynucleoside therapy for thymidine kinase 2–deficient myopathy. Ann. Neurol. 86 204–214

    Article  Google Scholar 

  • Elachouri G, Vidoni S, Zanna C, et al. 2011 OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 21 42–52

    Article  Google Scholar 

  • El-Hattab AW and Scaglia F 2013 Mitochondrial DNA depletion syndromes: Review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10 186–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filosto M, Scarpelli M, Tonin P, et al. 2012 Course and management of allogeneic stem cell transplantation in patients with mitochondrial neurogastrointestinal encephalomyopathy. J. Neurol. 259 2571–2576

    Article  Google Scholar 

  • Finsterer J and Zarrouk-Mahjoub S 2018 Phenotypic spectrum of SLC25A4 mutations. Biomed. Rep. 9 129–134

    Google Scholar 

  • Flierl A, Chen Y, Coskun PE, et al. 2005 Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Ther. 12 570–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers S, Kothari R, Torres Cleuren YN, et al. 2023 Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 12 e79725

  • Freisinger P, Fütterer N, Lankes E, et al. 2006 Hepatocerebral mitochondrial DNA depletion syndrome caused by deoxyguanosine kinase (DGUOK) mutations. Arch. Neurol. 63 1129–1134

    Article  PubMed  Google Scholar 

  • Fukuhara H 1969 Relative proportions of mitochondrial and nuclear DNA in yeast under various conditions of growth. Eur. J. Biochem. 11 135–139

    Article  PubMed  CAS  Google Scholar 

  • Garone C, Garcia-Diaz B, Emmanuele V, et al. 2014 Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol. Med. 6 1016–1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garone C, Tadesse S and Hirano M 2011 Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 134 3326–3332

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhold JM, Cansiz-Arda S, Lohmus M, et al. 2015 Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 5 15292

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Vioque E, Torres-Torronteras J, Andreu AL, et al. 2011 Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy. PLoS Genet. 7 6109–6121

    Article  Google Scholar 

  • Graziewicz MA, Longley MJ, Copeland WC 2006 DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 106 383–405

  • Guan K, Farh L, Marshall TK, et al. 1993 Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr. Genet. 24 141–148

    Article  PubMed  CAS  Google Scholar 

  • Guittet O, Håkansson P, Voevodskaya N, et al. 2001 Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J. Biol. Chem. 276 39655–39661

    Article  Google Scholar 

  • Hargreaves IP, Rahman S, Guthrie P, et al. 2002 Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion. J. Inherit. Metab. Dis. 25 7–16

    Article  PubMed  CAS  Google Scholar 

  • He J, Cooper HM, Reyes A, et al. 2012 Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 40 6109–6121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Voth A, Sayas CJ, Corral BM, et al. 2020 Deoxynucleoside therapy for respiratory involvement in adult patients with thymidine kinase 2-deficient myopathy. BMJ Open Respir. Res. 7 e000774

    Article  PubMed Central  Google Scholar 

  • Hirano M, Martí R, Casali C, et al. 2006 Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology 67 1447–1449

    Article  Google Scholar 

  • Hollenberg CP, Borst P and Van Bruggen EFJ 1972 Mitochondrial DNA from cytoplasmic petite mutants of yeast. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 277 35–43

    Article  CAS  Google Scholar 

  • Holt IJ, He J, Mao CC, et al. 2007 Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 7 311–321

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Ban-Ishihara R, Ota A, et al. 2022 Mitochondrial nucleoid trafficking regulated by the inner-membrane AAA-ATPase ATAD3A modulates respiratory complex formation. PNAS 119 2021–2030

    Article  Google Scholar 

  • Karakaidos P and Rampias T 2020 Mitonuclear interactions in the maintenance of mitochondrial integrity. Life 10 173

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashiki T, Kido J, Momosaki K, et al. 2022 Mitochondrial DNA depletion syndrome with a mutation in SLC25A4 developing epileptic encephalopathy: A case report. Brain Dev. 44 101–105

    Article  Google Scholar 

  • Kaufman BA, Durisic N, Mativetsky JM, et al. 2007 The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18 3225–3236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawalec M, Boratyńska-Jasińska A, Beręsewicz M, et al. 2015 Mitofusin 2 deficiency affects energy metabolism and mitochondrial biogenesis in MEF Cells. PLoS One 10 e0134162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocaefi YÇ, Erdem S, Özgüç M, et al. 2003 Four novel thymidine phosphorylase gene mutations inmitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) patients. Eur. J. Hum. Genet. 11 102–104

  • Kornblum C, Nicholls TJ, Haack TB, et al. 2013 Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 45 138–145

    Article  Google Scholar 

  • Kripps KA, Nakayuenyongsuk W, Shayota BJ, et al. 2020 Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol. Genet. Metab. 130 53–61

    Article  Google Scholar 

  • Lara MC, Valentino ML, Torres-Torronteras J, et al. 2007 Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Biochemical features and therapeutic approaches. Biosci. Rep. 27 151–163

    Article  PubMed  CAS  Google Scholar 

  • Lara MC, Weiss B, Illa I, et al. 2006 Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology 67 1461–1463

    Article  PubMed  CAS  Google Scholar 

  • Lee NC, Dimmock D, Hwu WL, et al. 2009 Simultaneous detection of mitochondrial DNA depletion and single-exon deletion in the deoxyguanosine gene using array-based comparative genomic hybridisation. Arch. Dis. Child 94 55–58

    Article  PubMed  Google Scholar 

  • Levene M, Bain MD, Moran NF, et al. 2019 Safety and efficacy of erythrocyte encapsulated thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy. J. Clin. Med. 8 457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis SC, Uchiyama LF, and Nunnari J 2016 ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353 aaf5549

  • Liu X and Hajnóczky G 2011 Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia–reoxygenation stress. Cell Death Differen. 18 1561–1572

    Article  CAS  Google Scholar 

  • Liu X, Weaver D, Shirihai O, et al. 2009 Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion–fission dynamics. EMBO J. 28 3074–3089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, et al. 2017 Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann. Neurol. 81

  • Lu B, Lee J, Nie X, et al. 2013 Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol. Cell 49 121

    Article  PubMed  CAS  Google Scholar 

  • Luévano-Martínez LA, Forni MF, Dos Santos VT, et al. 2015 Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim. Biophys. Acta Bioenergetics 1847 587–598

    Article  Google Scholar 

  • Mathews CK and Song S 2007 Maintaining precursor pools for mitochondrial DNA replication. FASEB J. 21 2294–2303

    Article  PubMed  CAS  Google Scholar 

  • Matic S, Jiang M, Nicholls TJ, et al. 2018 Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat. Commun. 9 1202

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Medeiros TC, Thomas RL, Ghillebert R, et al. 2018 Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. J. Cell Biol. 217 1601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moraes CT 2001 What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17 199–205

    Article  PubMed  CAS  Google Scholar 

  • Moraes CT, Kenyon L and Hao H 1999 Mechanisms of human mitochondrial DNA maintenance: the determining role of primary sequence and length over function. Mol. Biol. Cell. 10 3345–3356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran NF, Bain MD, Muqit MMK, et al. 2008 Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology 71 686–688

    Article  PubMed  CAS  Google Scholar 

  • Morten KJ, Ashley N, Wijburg F, et al. 2007 Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion 7 386–395

    Article  PubMed  CAS  Google Scholar 

  • Nagley P and Linnane AW 1972 Biogenesis of mitochondria: XXI. Studies on the nature of the mitochondrial genome in yeast: The degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. Mol. Biol. 66 181–193

    Article  CAS  Google Scholar 

  • Naviaux RK 2016 Childhood Alpers-Huttenlocher syndrome; in Mitochondrial case studies: underlying mechanisms and diagnosis (Eds.) RP Saneto, S Parikh and BH Cohen (Academic Press, Amsterdam, The Netherlands) pp 135–148

  • Ngo HB, Lovely GA, Phillips R, et al. 2014 Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat. Commun. 5 1

    Article  Google Scholar 

  • Nogueira C, Almeida LS, Nesti C, et al. 2014 Syndromes associated with mitochondrial DNA depletion. J. Pediatr. 40 186–198

    Google Scholar 

  • Nissanka N, Bacman SR, Plastini MJ, et al. 2018 The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat. Commun. 9 2491

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Nissanka N, Minczuk M and Moraes CT 2019 Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 35 3

    Article  Google Scholar 

  • Ostergaard E, Birk ML, Serap K-SH, et al. 2009 Four novel PDHA1 mutations in pyruvate dehydrogenase deficiency. J. Inherit. Metab. Dis. 32 S235–S359

    Article  PubMed  Google Scholar 

  • Palozzi JM, Jeedigunta SP, Minenkova AV, et al. 2022 Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab. 34 1809-1823.e6

    Article  PubMed  CAS  Google Scholar 

  • Parikh S, Karaa A, Goldstein A, et al. 2016 Solid organ transplantation in primary mitochondrial disease: Proceed with caution. Mol. Genet. Metab. 118 3

    Article  Google Scholar 

  • Parini R, Furlan F, Notarangelo L, et al. 2009 Glucose metabolism and diet-based prevention of liver dysfunction in MPV17 mutant patients. J. Hepatol. 50 1

    Article  Google Scholar 

  • Peeva V, Blei D, Trombly G, et al. 2018 Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 9 1727

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Peralta S, Goffart S, Williams SL, et al. 2018 ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J. Cell Sci. 131 13

    Google Scholar 

  • Persson Ö, Muthukumar Y, Basu S, et al. 2019 Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat. Commun. 10 1231

    Article  Google Scholar 

  • Pfeffer G, Horvath R, Klopstock T, et al. 2013 New treatments for mitochondrial disease—no time to drop our standards. Nat. Rev. Neurol. 9 474–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitceathly RDS, Rahman S, Hanna MG, et al. 2012 Single deletions in mitochondrial DNA – Molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul. Disord. 22 577–586

  • Ponamarev MV, Longley MJ, Nguyen D, et al. 2002 Active site mutation in DNA polymerase γ associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J. Biol. Chem. 277 15225–15228

    Article  PubMed  CAS  Google Scholar 

  • Poulton J, Sewry C, Potter CG, et al. 1995 Variation in mitochondrial DNA levels in muscle from normal controls. Is depletion of mtDNA in patients with mitochondrial myopathy a distinct clinical syndrome? J. Inherit. Metab. Dis. 18 4–20

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Guo Y, Xue B, et al. 2020 ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun., 11

  • Rahman S and Poulton J 2009 Diagnosis of mitochondrial DNA depletion syndromes. Arch. Dis. Child. 94 3–5

    Article  PubMed  Google Scholar 

  • Rahman S 2015 Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 49 91–95

    Article  Google Scholar 

  • Ramón J, Vila-Julià F, Molina-Granada D, et al. 2021 Therapy prospects for mitochondrial DNA maintenance disorders. Int. J. Mol. Sci. 22 6447

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos ES, Motori E, Brüser C, et al. 2019 Mitochondrial fusion is required for the regulation of mitochondrial DNA replication. PLoS Genet. 15 e1008085

    Article  CAS  Google Scholar 

  • Rantanen A, Jansson M, Oldfors A, et al. 2001 Downregulation of Tfam and mtDNA copy number during mammalian spermatogenesis. Mamm. Genome 12 787–792

    Article  PubMed  CAS  Google Scholar 

  • Rantanen A and Larsson NG 2000 Regulation of mitochondrial DNA copy number during spermatogenesis. Hum. Reprod. 15 86–91

    Article  PubMed  Google Scholar 

  • Ruhanen H, Borrie S, Szabadkai G, et al. 2010 Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organization. Biochim. Biophys. Acta Mol. Cell Res. 1803 931–939

    Article  CAS  Google Scholar 

  • Riccio AA, Bouvette J, Perera L, et al. 2022 Structural insight and characterization of human Twinkle helicase in mitochondrial disease. PNAS 119 e2207459119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rylova SN, Mirzaee S, Albertioni F, et al. 2007 Expression of deoxynucleoside kinases and 5′-nucleotidases in mouse tissues: Implications for mitochondrial toxicity. Biochem. Pharmacol. 74 68–74

    Article  Google Scholar 

  • Salviati L, Sacconi S, Mancuso M, et al. 2002 Mitochondrial DNA depletion and dGK gene mutations. Ann. Neurol. 52 311–317

    Article  PubMed  CAS  Google Scholar 

  • Santra S, Gilkerson RW, Davidson M, et al. 2004 Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann. Neurol. 56 662–669

    Article  PubMed  CAS  Google Scholar 

  • Ilamathi HS, Ouellet M, Sabouny R, et al. 2021 Mitochondrial fission is required for proper nucleoid distribution within mitochondrial networks. bioRxiv https://doi.org/10.1101/2021.03.17.435804

  • Sarzi E, Bourdon A, Chrétien D, et al. 2007 Mitochondrial DNA depletion is a prevalent cause of multiple respiratory chain deficiency in childhood. J. Pediatr. 150 531-534.e6

    Article  PubMed  CAS  Google Scholar 

  • Shokolenko IN and Alexeyev MF 2015 Mitochondrial DNA: A disposable genome? Biochim. Biophys. Acta Mol. Basis Dis. 1852 1805–1809

    Article  CAS  Google Scholar 

  • Shaw T, Smillie RH and MacPhee DG 1988 The role of blood platelets in nucleoside metabolism: assay, cellular location and significance of thymidine phosphorylase in human blood. Mutat. Res. Fundam. Mol. Mech. Mutagen. 200 121–129

    Google Scholar 

  • Song S, Pursell ZF, Copeland WC, et al. 2005 DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. PNAS 102 4990–4995

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Spinazzola A, Invernizzi F, Carrara F, et al. 2009 Clinical and molecular features of mitochondrial DNA depletion syndromes. J. Inherit. Metab. Dis. 32 143–158

    Article  CAS  Google Scholar 

  • Spinazzola A, Marti R, Nishino I, et al. 2002 Altered thymidine metabolism due to defects of thymidine phosphorylase. J. Biol. Chem. 277 4128–4133

    Article  PubMed  CAS  Google Scholar 

  • Stephan T, Roesch A, Riedel D, et al. 2019 Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9 6014

    Article  Google Scholar 

  • Stewart JD, Schoeler S, Sitarz KS, et al. 2011 POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts. Biochim. Biophys. Acta Mol. Basis Dis. 1812 321–325

    Article  CAS  Google Scholar 

  • Stringer HAJ, Sohi GK, Maguire JA, et al. 2013 Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J. Neurol. Sci. 325 142–147

    Article  PubMed  CAS  Google Scholar 

  • Sun R and Wang L 2014 Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion. Biochemistry 53 6540–6548

    Article  Google Scholar 

  • Suomalainen A and Isohanni P 2010 Mitochondrial DNA depletion syndromes – Many genes, common mechanisms. Neuromuscul. Dis. 20 429–437

    Article  Google Scholar 

  • Taanman JW, Muddle JR, Muntau AC, et al. 2003 Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts. Hum. Mol. Genet. 12 183–193

    Article  Google Scholar 

  • Takamatsu C, Umeda S, Ohsato T, et al. 2002 Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 3 451–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Y, Schon EA, Wilichowski E, et al. 2000 Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol. Biol. Cell. 11 1471–1485

    Article  PubMed Central  CAS  Google Scholar 

  • Vielhaber S, Debska-Vielhaber G, Peeva V, et al. 2013 Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125 125–126

    Article  Google Scholar 

  • Wai T, Ao A, Zhang X, et al. 2010 The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83 52–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wanrooij S, Goffart S, Pohjoismäki JLO, et al. 2007 Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucleic Acids Res. 35 3238–3249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Boyd RM, Tree MO, et al. 2019 Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc. Natl. Acad. Sci. USA 116 17829–17831

    Article  Google Scholar 

  • Yavuz H, Özel A, Christensen M, et al. 2007 Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch. Neurol. 64 435–436

    Article  PubMed  Google Scholar 

  • Yoshimura A, Kuwazuru Y, Furukawa T, et al. 1990 Purification and tissue distribution of human thymidine phosphorylase; high expression in lymphocytes, reticulocytes and tumors. Biochim. Biophys. Acta 1034 107–113

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ and Van Der Bliek AM 2012 Mitochondrial fission, fusion, and stress. Science 337 1062–1065

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H and Singh KK 2014 Global genetic determinants of mitochondrial DNA copy number. PLoS One 9 e105242

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhao L 2019 Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 45 311–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L and Sumberaz P 2020 Mitochondrial DNA damage: prevalence, biological consequence, and emerging pathways. Chem. Res. Toxicol. 33 2491–2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Kannisto K, Curbo S, et al. 2013 Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation. PLoS One 8 e58843

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Autophagy Laboratory (JNCASR), Rahul Dubey, and Aparna Hebbar for their valuable inputs and critical review of the manuscript. We thank all the researchers who have contributed to the field of mitochondrial DNA depletion syndromes and sincerely apologize to researchers whose work could not be acknowledged due to space constraints. The figures were created with BioRender.com under a paid subscription.

Funding

This work is supported by the S. Ramachandran-National Bioscience Award for Career Development (NBACD)-2020-21 (SAN No.102/ IFD/SAN/990/2021-22) and JNCASR intramural funds to RM, DBT-JRF programme to CJ, and JNCASR scholarship to RS.

Author information

Authors and Affiliations

Authors

Contributions

RS contributed to the following sections: ‘Mechanistic overview of mitochondrial DNA copy number maintenance under homeostatic conditions’, ‘Mitochondrial DNA depletion syndromes: A mechanistic perspective’, figure 1, figure 2, figure 3 and figure 4. CJ contributed to ‘Therapeutic interventions for the treatment of mitochondrial DNA depletion syndromes’, and table 1. RM contributed to the conceptualization and critical review of the manuscript.

Corresponding author

Correspondence to Ravi Manjithaya.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Corresponding editor: Rakesh K Mishra

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, R., Jetto, C.T. & Manjithaya, R. Decoding the mitochondria without a code: mechanistic insights into mitochondrial DNA depletion syndromes. J Biosci 49, 32 (2024). https://doi.org/10.1007/s12038-024-00428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-024-00428-9

Keywords

Navigation