Skip to main content
Log in

Are all VapC toxins of Mycobacterium tuberculosis endowed with enigmatic RNase activity?

  • Brief communication
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis (M. tb) employs an extensive network of more than 90 toxin–antitoxin systems, and among them, VapC toxins are the most abundant. While most VapCs function as classical RNases with toxic effects, a significant number of them do not exhibit toxicity. However, these non-toxic VapCs may retain specific RNA binding abilities as seen in case of VapC16, leading to ribosome stalling at specific codons and reprofiling M. tb's proteome to aid in the bacterium's survival under different stressful conditions within the host. Here, we challenge the conventional classification of all VapC toxins as RNases and highlight the complexity of M. tb's strategies for survival and adaptation during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Agarwal S, Tiwari P, Deep A, et al. 2018 System-wide analysis unravels the differential regulation and in vivo essentiality of virulence-associated proteins B and C toxin-antitoxin systems of Mycobacterium tuberculosis. J. Infect. Dis. 217 1809–1820

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Sharma A, Bouzeyen R, et al. 2020 VapBC22 toxin-antitoxin system from Mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. Sci. Adv. 6 eaba6944

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahidjo BA, Kuhnert D, McKenzie JL, et al. 2011 VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS One 6 e21738

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed N, Dobrindt U, Hacker J and Hasnain SE 2008 Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat. Rev. Microbiol. 6 387–394

    Article  PubMed  CAS  Google Scholar 

  • Akarsu H, Bordes P, Mansour M, et al. 2019 TASmania: A bacterial toxin-antitoxin systems database. PLoS Comput. Biol. 15 e1006946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barth VC, Zeng JM, Vvedenskaya IO, et al. 2019 Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat. Commun. 10 3035

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Bordes P and Genevaux P 2021 Control of toxin-antitoxin systems by proteases in Mycobacterium tuberculosis. Front. Mol. Biosci. 8 691399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunker RD, McKenzie JL and Baker EN 2008 Crystal structure of PAE0151 from Pyrobaculum aerophilum, a PIN-domain (VapC) protein from a toxin-antitoxin operon. Proteins 72 510–518

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Usher B, Gutierrez C, et al. 2020 A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. Sci. Adv. 6 eabb6651

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakaya JM, Marais B, du Cros P, et al. 2020 Programmatic versus personalised approaches to managing the global epidemic of multidrug-resistant tuberculosis. Lancet Respir Med. 8 334–335

    Article  PubMed  CAS  Google Scholar 

  • Chauhan U, Barth VC and Woychik NA 2022 tRNAfMet inactivating Mycobacterium tuberculosis VapBC toxin-antitoxin systems as therapeutic targets. Antimicrob. Agents Chemother. 66 e0189621

    Article  PubMed  Google Scholar 

  • Chen R, Tu J, Tan Y, et al. 2019 Structural and biochemical characterization of the cognate and heterologous interactions of the MazEF-mt9 TA system. ACS Infect. Dis. 5 1306–1316

    Article  PubMed  CAS  Google Scholar 

  • Cintron M, Zeng JM, Barth VC, et al. 2019 Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci. Rep. 9 5949

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Cook GM, Robson JR, Frampton RA, et al. 2013 Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 18 523–531

    Article  Google Scholar 

  • Cruz JW, Sharp JD, Hoffer ED, et al. 2015 Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat. Commun. 6 7480

    Article  ADS  PubMed  Google Scholar 

  • Das U, Pogenberg V, Subhramanyam UK, et al. 2014 Crystal structure of the VapBC-15 complex from Mycobacterium tuberculosis reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of toxin-antitoxin assembly. J. Struct. Biol. 188 249–258

    Article  PubMed  CAS  Google Scholar 

  • Dawson CC, Cummings JE and Starkey JM 2022 Discovery of a novel type IIb RelBE toxin-antitoxin system in Mycobacterium tuberculosis defined by co-regulation with an antisense RNA. Mol. Microbiol. 117 1419–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deep A, Kaundal S, Agarwal S, et al. 2017 Crystal structure of Mycobacterium tuberculosis VapC20 toxin and its interactions with cognate antitoxin, VapB20, suggest a model for toxin-antitoxin assembly. FEBS J. 284 4066–4082

    Article  PubMed  CAS  Google Scholar 

  • Demidenok OI, Kaprelyants AS and Goncharenko AV 2014 Toxin-antitoxin vapBC locus participates in formation of the dormant state in Mycobacterium smegmatis. FEMS Microbiol. Lett. 352 69–77

    Article  PubMed  CAS  Google Scholar 

  • Gupta A 2009 Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 290 45–53

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Venkataraman B, Vasudevan M and Gopinath Bankar K 2017 Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci. Rep. 7 5868

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Harms A, Maisonneuve E and Gerdes K 2016 Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354 aaf4268

    Article  PubMed  Google Scholar 

  • Jardim P, Santos IC, Barbosa JA, et al. 2016 Crystal structure of VapC21 from Mycobacterium tuberculosis at 1.31 Å resolution. Biochem. Biophys. Res. Commun. 478 1370–1375

    Article  PubMed  CAS  Google Scholar 

  • Kang SM, Kim DH, Lee KY, et al. 2017 Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Res. 45 8564–8580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kedzierska B and Hayes F 2016 Emerging roles of toxin-antitoxin modules in bacterial pathogenesis. Molecules 21 790

    Article  PubMed  PubMed Central  Google Scholar 

  • Keren I, Minami S, Rubin E, et al. 2011 Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. mBio 2 e00100-e111

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Rani M and Ehtesham NZ 2017 Commentary: modification of host responses by mycobacteria. Front. Immunol. 8 466

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee IG, Lee SJ, Chae S, et al. 2015 Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides. Nucleic Acids Res. 43 7624–7637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miallau L, Faller M, Chiang J, et al. 2009 Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J. Biol. Chem. 284 276–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ovchinnikov SV, Bikmetov D, Livenskyi A, et al. 2020 Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Res. 48 8617–8625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman SA, Singh Y, Kohli S, et al. 2014 Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. mBio 5 e02020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramage HR, Connolly LE and Cox JS 2009 Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5 e1000767

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi N, Zarin S, Alam A, et al. 2023 Structural and Biophysical properties of therapeutically important proteins Rv1509 and Rv2231A of Mycobacterium tuberculosis. Int. J. Biol. Macromol. 245 125455

    Article  PubMed  CAS  Google Scholar 

  • Sala A, Bordes P and Genevaux P 2014 Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 6 1002–1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvapandiyan A, Puri N, Kumar P, et al. 2023 Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol. Rev 47 fuac041

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, Harrison EM, Bi D, et al. 2011 TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res. 39 D606–D611

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Chattopadhyay G, Chopra P, et al. 2020 VapC21 Toxin contributes to drug-tolerance and interacts with non-cognate VapB32 antitoxin in Mycobacterium tuberculosis. Front. Microbiol. 11 2037

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp JD, Cruz JW, Raman S, et al. 2012 Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J. Biol. Chem. 287 12835–12847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharrock A, Ruthe A, Andrews ES, et al. 2018 VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 13 e0203412

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh G, Yadav M, Ghosh C, et al. 2021 Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Curr. Res. Microb. Sci. 2 100047

    PubMed  PubMed Central  CAS  Google Scholar 

  • Slayden RA, Dawson CC and Cummings JE, 2018 Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog. Dis. 76 fty039

  • Sundaram K, Vajravelu LK and Paul AJ 2023 Functional characterization of toxin-antitoxin system in Mycobacterium tuberculosis. Indian J. Tuberc. 70 149–157

    Article  PubMed  Google Scholar 

  • Tandon H, Sharma A, Wadhwa S, et al. 2019 Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J. Biol. Chem. 294 9048–9063

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi FG, Hall AMJ, Schweber JTP, et al. 2022 A tRNA-acetylating toxin and detoxifying enzyme in Mycobacterium tuberculosis. Microbiol. Spectr. 10 e0058022

    Article  PubMed  Google Scholar 

  • Walling LR and Butler JS 2018 Homologous VapC toxins inhibit translation and cell growth by sequence-specific cleavage of tRNAfMet. J. Bacteriol. 200 e00582-e00617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winther KS, Brodersen DE, Brown AK, et al. 2013 VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat. Commun. 4 2796

    Article  ADS  PubMed  Google Scholar 

  • Winther K, Tree JJ, Tollervey D, et al. 2016 VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res. 44 9860–9871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and preparation of the manuscript. AA, SZ, SEH and NZE read and approved the final manuscript.

Corresponding authors

Correspondence to Seyed Ehtesham Hasnain or Nasreen Zafar Ehtesham.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Corresponding editor: Umesh Varshney

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarin, S., Alam, A., Hasnain, S.E. et al. Are all VapC toxins of Mycobacterium tuberculosis endowed with enigmatic RNase activity?. J Biosci 49, 35 (2024). https://doi.org/10.1007/s12038-024-00420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-024-00420-3

Keywords

Navigation