Skip to main content

Advertisement

Log in

Understanding pathophysiology of GNE myopathy and current progress towards drug development

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

GNE myopathy is a rare genetic neuromuscular disease that is caused due to mutations in the GNE gene responsible for sialic acid biosynthesis. Foot drop is the most common initial symptom observed in GNE myopathy patients. There is slow progressive muscle weakness in the lower and upper extremities while the quadriceps muscles are usually spared. The exact pathophysiology of the disease is unknown. Besides sialic acid biosynthesis, recent studies suggest either direct or indirect involvement of GNE in other cellular functions such as protein aggregation, apoptosis, ER stress, cell migration, HSP70 chaperone activity, autophagy, muscle atrophy, and myogenesis. Both animal and in vitro cell-based model systems are generated to elucidate the mechanism of GNE myopathy and evaluate the efficacy of therapies. The many therapeutic avenues explored include supplementation with sialic acid derivatives or precursors and gene therapy. Recent studies suggest other therapeutic options such as modulators of HSP70 chaperone (BGP-15), cofilin activator (CGA), and ligands like IGF-1 that may help to rescue cellular defects due to GNE dysfunction. This review provides an overview of the pathophysiology associated with GNE function in the cell and promising therapeutic leads to be explored for future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adarsh A, Bhat D and Nataraj R 2020 India rare disease initiatives – a review. Int. J. Innov. Med. Health Sci. 12 82–88

    Google Scholar 

  • Agarwal M, Sharma A, Kumar P, et al. 2020 Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development 147 dev184507

    Google Scholar 

  • Amouri R, Driss A, Murayama K, et al. 2005 Allelic heterogeneity of GNE gene mutation in two Tunisian families with autosomal recessive inclusion body myopathy. Neuromuscul. Disord. 15 361–363

    Article  PubMed  CAS  Google Scholar 

  • Amsili S, Shlomai Z, Levitzki R, et al. 2007 Characterization of hereditary inclusion body myopathy myoblasts: Possible primary impairment of apoptotic events. Cell Death Differ. 14 1916–1924

    Article  PubMed  CAS  Google Scholar 

  • Amsili S, Zer H, Hinderlich S, et al. 2008 UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: Novel pathways in skeletal muscle? PLoS One 3 e2477

    Article  Google Scholar 

  • Argov Z and Mitrani Rosenbaum S 2015 GNE myopathy: two clusters with history and several founder mutations. J. Neuromuscul. Dis. 2 S73–S76

    Article  PubMed  PubMed Central  Google Scholar 

  • Argov Z and Yarom R 1984 Rimmed vacuole myopathy sparing the quadriceps. A unique disorder in Iranian Jews. J. Neurol. Sci. 64 33–43

    Article  PubMed  CAS  Google Scholar 

  • Argov Z, Eisenberg I, Grabov-Nardini G, et al. 2003 Hereditary inclusion body myopathy: The Middle Eastern genetic cluster. Neurology 60 1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Attri S, Lone M, Katiyar A, et al. 2023 Genetic analysis of HIBM myopathy-specific GNE V727M hotspot mutation identifies a novel COL6A3 allied gene signature that is also deregulated in multiple neuromuscular diseases and myopathies. Genes 14 567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Awasthi K, Arya R, Bhattacharya A, Bhattacharya S, et al. 2019 The inherited neuromuscular disorder GNE myopathy: research to patient care. Neurol. India 67 1213–1219

    Article  PubMed  Google Scholar 

  • Barbier P, Zejneli O, Martinho M, et al. 2019 Role of tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci. 10 1–14

    Google Scholar 

  • Bárdos G, Móricz K, Jaszlits L, et al. 2003 BGP-15, a hydroximic acid derivative, protects against cisplatin- or taxol-induced peripheral neuropathy in rats. Toxicol. Appl. Pharmacol. 190 9–16

    Article  PubMed  Google Scholar 

  • Barel O, Kogan E, Sadeh M, et al. 2019 Abdominal muscle weakness as a presenting symptom in GNE myopathy. J. Clin. Neurosci. 59 316–317

    Article  PubMed  Google Scholar 

  • Bartoli M, Desvignes JP, Nicolas L, et al. 2014 Exome sequencing as a second-tier diagnostic approach for clinically suspected dysferlinopathy patients. Muscle Nerve 50 1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Béhin A, Dubourg O, Laforêt P, et al. 2008 Myopathies distales avec mutations du gène GNE: à propos de quatre cas. Rev. Neurol. 164 434–443

    Article  PubMed  Google Scholar 

  • Behnam M, Jin-Hong S, Kim DS, et al. 2014 A novel missense mutation in the GNE gene in an Iranian patient with hereditary inclusion body myopathy. J. Res. Med. Sci. 19 792–794

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya S, Khadilkar SV, Nalini A, et al. 2018 Mutation spectrum of GNE myopathy in the Indian sub-continent. J. Neuromuscul. Dis. 5 85–92

    Article  PubMed  Google Scholar 

  • Blume A, Ghaderi D, Liebich V, et al. 2004 UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase, functionally expressed in and purified from Escherichia coli, yeast, and insect cells. Protein Expr. Purif. 35 387–396

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, et al. 2001 Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294 1704–1709

    Article  ADS  PubMed  CAS  Google Scholar 

  • Bonaldo P and Sandri M 2013 Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6 25–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosch-Morató M, Iriondo C, Guivernau B, et al. 2016 Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy. Oncotarget 7 13354–13371

    Article  PubMed  PubMed Central  Google Scholar 

  • Broccolini A, Pescatori M, D’Amico A, et al. 2002 An Italian family with autosomal recessive inclusion-body myopathy and mutations in the GNE gene. Neurology 59 1808–1809

    Article  PubMed  CAS  Google Scholar 

  • Broccolini A, Ricci E, Cassandrini D, et al. 2004 Novel GNE mutations in Italian families with autosomal recessive hereditary inclusion-body myopathy. Hum. Mutat. 23 632

    Article  PubMed  Google Scholar 

  • Bruno C, Grandis M, Cassandrini D, et al. 2008 Gene symbol: GNE. Disease: Inclusion body myopathy. Hum. Genet. 123 552

  • Cao Y, Gunn AJ, Bennet L, et al. 2003 Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J. Cereb. Blood Flow Metab. 23 739–747

    Article  PubMed  CAS  Google Scholar 

  • Carrillo N, Malicdan MC and Huizing M 2018 GNE myopathy: etiology, diagnosis, and therapeutic challenges. Neurotherapeutics 15 900–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrillo N, Malicdan MC, Leoyklang P, et al. 2021 Safety and efficacy of N-acetylmannosamine (ManNAc) in patients with GNE myopathy: an open-label phase 2 study. Genet. Med. 23 2067–2075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carro E, Trejo JL, Busiguina, et al. 2001 Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21 5678–5684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Celeste FV, Vilboux T, Ciccone C, et al. 2014 Mutation update for GNE gene variants associated with GNE myopathy. Hum. Mutat. 35 915–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerino M, Gorokhova S, Béhin A, et al. 2015 Novel pathogenic variants in a French cohort widen the mutational spectrum of GNE myopathy. J. Neuromuscul. Dis. 2 131–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan YM, Lee P, Jungles S, et al. 2017 Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model. PLoS One 12 e0173261

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanana P, Padhy G, Bhargava K, Arya R, et al. 2017 Mutation in GNE downregulates peroxiredoxin IV altering ER redox homeostasis. Neuromolecular Med. 19 525–540

    Article  PubMed  CAS  Google Scholar 

  • Chaouch A, Brennan KM, Hudson J, et al. 2014 Two recurrent mutations are associated with GNE myopathy in the north of Britain. J. Neurol. Neurosurg. Psychiatry 85 1359–1365

    Article  PubMed  Google Scholar 

  • Chaudhary P, Sharma S, Singh R, Arya R, et al. 2021 Elucidation of ER stress and UPR pathway in sialic acid-deficient cells: Pathological relevance to GNEM. J. Cell. Biochem. 122 1886–1902

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Huang CH, Lai SJ, et al. 2016 Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis. Sci. Rep. 6 1–10

    Google Scholar 

  • Cho A, Hayashi YK, Monma K, et al. 2014 Mutation profile of the GNE gene in Japanese patients with distal myopathy with rimmed vacuoles (GNE myopathy). J. Neurol. Neurosurg. Psychiatry Res. 85 912–915

    Google Scholar 

  • Cho A, Christine M, Malicdan V, et al. 2017 Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum. Mol. Genet. 26 3081–3093

  • Clarke BA, Drujan D, Willis MS, et al. 2007 The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 6 376–385

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Brault JJ, Gygi SP, et al. 2009 During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185 1083–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darvish D, Vahedifar P and Huo Y 2002 Four novel mutations associated with autosomal recessive inclusion body myopathy (MIM: 600737). Mol. Gene. Metab. 77 252–256

    Article  CAS  Google Scholar 

  • Del Bo R, Baron P, Prelle A, et al. 2003 Novel missense mutation and large deletion of GNE gene in autosomal-recessive inclusion-body myopathy. Muscle Nerve 28 113–117

    Article  PubMed  Google Scholar 

  • Devi SS, Yadav R and Arya R 2021a Altered actin dynamics in cell migration of GNE mutant cells. Front. Cell. Dev. Biol. 9 1–18

    Article  Google Scholar 

  • Devi SS, Yadav R, Mashangva F, et al. 2021b Generation and characterization of a skeletal muscle cell-based model carrying one single gne allele: implications in actin dynamics. Mol. Neurobiol. 58 6316–6334

    Article  PubMed  CAS  Google Scholar 

  • Diniz G, Secil Y, Ceylaner S, et al. 2016 GNE myopathy in Turkish sisters with a novel homozygous mutation. Case Rep. Neurol. Med. 2016 8647645

    PubMed  PubMed Central  Google Scholar 

  • Eisenberg I, Avidan N, Potikha T, et al. 2001 The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29 83–87

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg I, Grabov-Nardini G, Hochner H, et al. 2003 Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Hum. Mutat. 21 99

    Article  PubMed  Google Scholar 

  • Eisenberg I, Novershtern N, Itzhaki Z, et al. 2008 Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum. Mol. Genet. 17 3663–3674

    Article  PubMed  CAS  Google Scholar 

  • Ferreira H, Seppala R, Pinto R, et al. 1999 Sialuria in a Portuguese girl: Clinical, biochemical, and molecular characteristics. Mol. Genet. Metab. 67 131–137

    Article  PubMed  CAS  Google Scholar 

  • Fielitz J, Bassel-duby R, Olson EN, et al. 2007 Myosin accumulation and striated muscle myopathy result from the loss of muscle RING Find the latest version: Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J. Clin. Invest. 117 2486–2495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer C, Kleinschnitz K, Wrede A, et al. 2013 Cell stress molecules in the skeletal muscle of GNE myopathy. BMC Neurol. 13 1

    Article  Google Scholar 

  • Fisher J, Towfighi J, Darvish D, et al. 2006 A case of hereditary inclusion body myopathy: 1 Patient, 2 novel mutations. J. Clin. Neuromuscul. Dis. 7 179–184

    Article  PubMed  Google Scholar 

  • Frontera WR and Ochala J 2015 Skeletal muscle: a brief review of structure and function. Behav. Genet. 45 183–195

    Google Scholar 

  • Galeano B, Klootwijk R, Manoli I, et al. 2007 Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117 1585–1594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garland J, Stephen J, Class B, et al. 2017 Identification of an Alu element-mediated deletion in the promoter region of GNE in siblings with GNE myopathy. Mol. Genet. Genomic Med. 5 410–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez G, Khanna M, Gupta A, et al. 2019 GNE myopathy – A cross-sectional study on spatio-temporal gait characteristics. Neuromuscul. Disord. 29 961–967

    Article  PubMed  Google Scholar 

  • Gonzalez- L, Gallardo E, Luna ND, et al. 2011 Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One 6 e29061

    Article  ADS  Google Scholar 

  • Granger A, Pinto MV, Milone M, et al. 2022 Glycogen accumulation in GNE myopathy. Neuromuscul. Disord. 32 774–775

    Article  PubMed  Google Scholar 

  • Grecu N, Villa L, Cavalli M, et al. 2021 Motor axonal neuropathy associated with GNE mutations. Muscle Nerve 63 396–401

    Article  PubMed  CAS  Google Scholar 

  • Grover S and Arya R 2014 Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion. Mol. Neurobiol. 50 257–273

    Article  PubMed  CAS  Google Scholar 

  • Grover S, Aslam S, Sharma V, et al. 2014 Expression and secretion of wild type and mutant GNE proteins in Dictyostelium discoideum. CNS Neurol. Disord. Drug Targets 13 1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Zhao Z, Shen H, et al. 2022 Gene analysis and clinical features of 22 GNE myopathy patients. Neurol. Sci. 43 5049–5056

    Article  PubMed  Google Scholar 

  • Gupta A, Atanasov AG, Li Y, et al. 2022 Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol. Res. 186 106505

    Article  PubMed  CAS  Google Scholar 

  • Harazi A, Chaouat M, Shlomai Z, et al. 2015 Survival-apoptosis associated signaling in GNE myopathy-cultured myoblasts. J. Recept. Signal Transduct. Res. 35 249–257

    Article  PubMed  CAS  Google Scholar 

  • Harazi A, Becker-Cohen M, Zer H, et al. 2017 The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 is altered in GNE myopathy M743T mutant. Mol. Neurobiol. 54 2928–2938

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich S, Salama I, Eisenberg I, et al. 2004 The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Lett. 566 105–109

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich S, Weidemann W, Yardeni T, et al. 2015 UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): A master regulator of sialic acid synthesis. Top. Curr. Chem. 366 97–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huizing M, Rakocevic G, Sparks SE, et al. 2004 Hypoglycosylation of α-dystroglycan in patients with hereditary IBM due to GNE mutations. Mol. Genet. Metab. 81 196–202

    Article  PubMed  CAS  Google Scholar 

  • Huizing M, Carrillo-Carrasco N, Malicdan MCV, et al. 2014 GNE myopathy: New name and new mutation nomenclature. Neuromuscul. Disord. 24 387–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda-Sakai Y, Manabe Y, Fujii D, et al. 2012 Novel mutations of the GNE gene in distal myopathy with rimmed vacuoles presenting with very slow progression. Case Rep. Neurol. 4 120–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X and Wang X 2004 Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73 87–106

    Article  PubMed  CAS  Google Scholar 

  • Jin SC, Homsy J, Zaidi S, et al. 2017 Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49 1593–1601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson B, Lowe GC, Futterer J, et al. 2016 Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 101 1170–1179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones MA, Rhodenizer D, da Silva C, et al. 2013 Molecular diagnostic testing for congenital disorders of glycosylation (CDG): Detection rate for single gene testing and next generation sequencing panel testing. Mol. Genet. Metab. 110 78–85

    Article  PubMed  CAS  Google Scholar 

  • Kalaydjieva L, Morar B, Chaix R, et al. 2005 A newly discovered founder population: The Roma gypsies. BioEssays 27 1084–1094

    Article  PubMed  CAS  Google Scholar 

  • Kannan MA, Challa S, Urtizberea AJ, et al. 2012 Case report: distal myopathy with rimmed vacuoles and inflammation: A genetically proven case. Neurol. India 60 631

    Article  PubMed  Google Scholar 

  • Kayashima T, Matsuo H, Satoh A, et al. 2002 Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J. Hum. Genet. 47 77–79

    Article  PubMed  CAS  Google Scholar 

  • Kedar V, Mcdonough H, Arya R, et al. 2004 Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc. Natl. Acad. Sci. USA 101 18135–18140

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy TL, Swiderski K, Murphy KT, et al. 2016 BGP-15 Improves aspects of the dystrophic pathology in mdx and dko mice with differing efficacies in heart and skeletal muscle. Am. J. Pathol. 186 3246–3260

    Article  PubMed  CAS  Google Scholar 

  • Khadilkar SV, Nallamilli BRR, Bhutada A, et al. 2017 A report on GNE myopathy: Individuals of Rajasthan ancestry share the Roma gene. J. Neurol. Sci. 375 239–240

    Article  PubMed  Google Scholar 

  • Khadilkar SV, Chaudhari AD, Singla MB, et al. 2021 Early and consistent pattern of proximal weakness in GNE myopathy. Muscle Nerve 63 199–203

    Article  PubMed  Google Scholar 

  • Kim C and Park JS 2023 Double-troubled brothers with GNE myopathy and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a case report. Acta Neurol. Belg. 123 1165–1167

    Article  PubMed  Google Scholar 

  • Kim BJ, Ki CS, Kim J-W, et al. 2006 Mutation analysis of the GNE gene in Korean patients with distal myopathy with rimmed vacuoles. J. Hum. Genet. 51 137–140

    Article  PubMed  CAS  Google Scholar 

  • Kocaturk NM and Gozuacik D 2018 Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front. Cell. Dev. Biol. 6 128

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Köroğlu Ç, Yılmaz R, Sorgun MH, et al. 2017 GNE missense mutation in recessive familial amyotrophic lateral sclerosis. Neurogenetics 18 237–243

    Article  PubMed  Google Scholar 

  • Krause S, Schlotter-weigel B, Walter MC, et al. 2003 A novel homozygous missense mutation in the GNE gene of a patient with quadriceps-sparing hereditary inclusion body myopathy associated with muscle inflammation. Neuromuscul. Disord. 13 830–834

    Article  PubMed  Google Scholar 

  • Leoyklang P, Malicdan MC, Yardeni T, et al. 2014 Sialylation of Thomsen-Friedenreich antigen is a noninvasive blood-based biomarker for GNE myopathy. Biomark. Med. 8 641–652

    Article  PubMed  CAS  Google Scholar 

  • Leoyklang P, Class B, Noguchi S, et al. 2018 Quantification of lectin fluorescence in GNE myopathy muscle biopsies. Muscle Nerve 58 286–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Chen Q, Liu F, et al. 2011 Clinical and molecular genetic analysis in Chinese patients with distal myopathy with rimmed vacuoles. J. Hum. Genet. 56 335–338

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chen Q, Liu F, et al. 2013 Unfolded protein response and activated degradative pathways regulation in GNE myopathy. PLoS One 8 e58116

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtenwalner RJ, Forbes ME, Bennett SA, et al. 2001 Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107 603–613

    Article  PubMed  CAS  Google Scholar 

  • Liewluck T, Pho-iam T, Limwongse C, et al. 2006 Mutation analysis of the GNE gene in distal myopathy with rimmed vacuoles (DMRV) patients in Thailand. Muscle Nerve 34 775–778

    Article  PubMed  CAS  Google Scholar 

  • Literáti-Nagy B, Kulcsár E, Literáti-Nagy Z, et al. 2009 Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial. Horm. Metab. Res. 41 374–380

    Article  PubMed  Google Scholar 

  • Literáti-Nagy B, Tory K, Peitl B, et al. 2014 Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies. Metab. Syndr. Relat. Disord. 12 125–131

    Article  PubMed  Google Scholar 

  • Liu N, Wang Z, Wang H, et al. 2015 Muscle biopsy and UDP- N -acetylglucosamine 2-epimerase / N-acetylmannosamine kinase gene mutation analysis in two Chinese patients with distal myopathy with rimmed vacuoles. Neuroreport 26 598–601

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhang Y, Zhang S, et al. 2022 Different electrophysiology patterns in GNE myopathy. Orphanet J. Rare Dis. 17 206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livne H, Avital T, Ruppo S, et al. 2022 Generation and characterization of a novel GNE knockout model in zebrafish. Front. Cell. Dev. Biol. 10 976111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lochmüller H, Behin A, Caraco Y, et al. 2019 A phase 3 randomized study evaluating sialic acid extended-release for GNE myopathy. Neurology 92 e2109–e2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X. hui, Pu C, Shi Q, et al. 2011 GNE gene mutation analysis in 5 patients with distal myopathy with rimmed vacuoles. Nan Fang Yi Ke Da Xue Xue Bao 31 1421–1424

  • Lv X, Xu L, Lin PF, et al. 2022 Clinical, genetic, and pathological characterization of GNE myopathy in China. Neurol. Sci. 43 4483–4491

    Article  PubMed  Google Scholar 

  • Malicdan MCV, Noguchi S, Nonaka I, et al. 2007 A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum. Mol. Genet. 16 2669–2682

    Article  PubMed  CAS  Google Scholar 

  • Malicdan MCV, Noguchi S, Hayashi YK, et al. 2009 Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat. Med. 15 690–695

    Article  PubMed  CAS  Google Scholar 

  • Malicdan MC, Okada T, Sela I, et al. 2011 P4.46 Expression of human GNE through adeno-associated virus mediated therapy delays progression of myopathy in the DMRV/hIBM mouse model. Neuromuscul. Disord. 21 718

  • Malicdan MCV, Noguchi S, Tokutomi T, et al. 2012 Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J. Biol. Chem. 287 2689–2705

    Article  PubMed  CAS  Google Scholar 

  • Martinez NN, Lipke M, Robinson J, et al. 2019 Sialuria: Ninth patient described has a novel mutation in GNE. JIMD Rep. 44 17–21

    Article  PubMed  Google Scholar 

  • Milan G, Romanello V, Pescatore F, et al. 2015 Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nat. Commun. 6 6670

    Article  ADS  PubMed  CAS  Google Scholar 

  • Milman Krentsis I, Sela I, Eiges R, et al. 2011 GNE is involved in the early development of skeletal and cardiac muscle. PLoS One 6 e21389

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mintz B and Baker WW 1967 Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc. Natl. Acad. Sci. USA 58 592–598

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Mir S, Cai W, Carlson SW, et al. 2017 IGF-1 mediated neurogenesis involves a novel RIT1 /Akt/Sox2 cascade. Sci. Rep. 7 3283

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mitrani-Rosenbaum S, Yakovlev L, Becker Cohen M, et al. 2012 Sustained expression and safety of human GNE in normal mice after gene transfer based on AAV8 systemic delivery. Neuromuscul. Disord. 22 1015–1024

    Article  PubMed  Google Scholar 

  • Mitrani-Rosenbaum S, Yakovlev L, Becker Cohen M, et al. 2022 Pre clinical assessment of AAVrh74.MCK.GNE viral vector therapeutic potential: robust activity despite lack of consistent animal model for GNE myopathy. J. Neuromuscul. Dis. 9 179–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori-yoshimura M, Monma K, Suzuki N, et al. 2012 Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. J. Neurol. Sci. 318 100–105

    Article  PubMed  CAS  Google Scholar 

  • Mori-Yoshimura M, Oya Y, Hayashi YK, et al. 2013 Respiratory dysfunction in patients severely affected by GNE myopathy (distal myopathy with rimmed vacuoles). Neuromuscul. Disord. 23 84–88

    Article  PubMed  Google Scholar 

  • Mori-Yoshimura M, Kimura A, Tsuru A, et al. 2022 Assessment of thrombocytopenia, sleep apnea, and cardiac involvement in GNE myopathy patients. Muscle Nerve 65 284–290

    Article  PubMed  CAS  Google Scholar 

  • Mori-Yoshimura M, Suzuki N, Katsuno M, et al. 2023 Efficacy confirmation study of aceneuramic acid administration for GNE myopathy in Japan. Orphanet J. Rare Dis. 18 241

    Article  PubMed  PubMed Central  Google Scholar 

  • Motozaki Y, Komai K, Hirohata M, et al. 2007 Hereditary inclusion body myopathy with a novel mutation in the GNE gene associated with proximal leg weakness and necrotizing myopathy. Eur. J. Neurol. 14 e14–e15

    Article  PubMed  CAS  Google Scholar 

  • Mullen J, Alrasheed K and Mozaffar T 2022 GNE myopathy: History, etiology, and treatment trials. Front. Neurol. 13 1002310

    Article  PubMed  PubMed Central  Google Scholar 

  • Murtazina A, Nikitin S, Rudenskaya G, et al. 2022 Genetic and clinical spectrum of GNE myopathy in Russia. Genes 13 1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagy G, Szarka A, Lotz G, et al. 2010 BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol. 243 96–10

    Article  PubMed  CAS  Google Scholar 

  • Nalini A, Nishino I, Gayathri N, et al. 2013 GNE myopathy in India. Neurol. India 61 371

    Article  PubMed  Google Scholar 

  • Naveed M, Hejazi V, Abbas M, et al. 2018 Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 97 67–74

    Article  PubMed  CAS  Google Scholar 

  • Niethamer TK, Yardeni T, Leoyklang P, et al. 2012 Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy. Mol. Genet. Metab. 107 748–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishino I, Noguchi S, Murayama K, et al. 2002 Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59 1689–1693

    Article  PubMed  CAS  Google Scholar 

  • Nishino I, Carrillo-Carrasco N and Argov Z 2015 GNE myopathy: Current update and future therapy. J. Neurol. Neurosurg. Psychiatry 86 385–392

    Article  PubMed  Google Scholar 

  • No D, Valles-ayoub Y, Sandoval L, et al. 2013 Novel GNE mutations in autosomal recessive hereditary inclusion body myopathy patients. Genet. Test. Mol. Biomarkers 17 376–382

    Article  PubMed  CAS  Google Scholar 

  • Nonaka I, Sunohara N, Ishiura S, et al. 1981 Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J. Neurol. Sci. 51 141–155

    Article  PubMed  CAS  Google Scholar 

  • Noordermeer T, van Asten I, Schutgens REG, et al. 2022 Enhanced hepatic clearance of hyposialylated platelets explains thrombocytopenia in GNE-related macrothrombocytopenia. Blood Adv. 6 3347–3351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novosyadlyy R, Kurshan N, Lann D, et al. 2008 Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum. Cell Death Differ. 15 1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Papadimas GK, Evilä A, Papadopoulos C, et al. 2016 GNE-myopathy in a Greek Romani family with unusual calf phenotype and protein aggregation pathology. J. Neuromuscul. Dis. 3 283–288

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kim H, Choi E, et al. 2012 Limb-girdle phenotype is frequent in patients with myopathy associated with GNE mutations. J. Neurol. Sci. 321 77–81

    Article  PubMed  CAS  Google Scholar 

  • Park YE, Kim DS, Choi YC, et al. 2019 Progression of GNE myopathy based on the patient-reported outcome. J. Clin. Neurol. 15 275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Patzel KA, Yardeni T, Le Poëc-Celic E, et al. 2014 Non-specific accumulation of glycosphingolipids in GNE myopathy. J. Inherit. Metab. Dis. 37 297–308

    Article  PubMed  CAS  Google Scholar 

  • Paul P and Liewluck T 2020 Distal myopathy and thrombocytopenia due to a novel GNE mutation. J. Neurol. Sci. 415 116954

    Article  PubMed  CAS  Google Scholar 

  • Pető Á, Kósa D, Fehér P, et al. 2020 Pharmacological overview of the BGP-15 chemical agent as a new drug candidate for the treatment of symptoms of metabolic syndrome. Molecules 25 429

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham ND, Pang PC, Krishnamurthy S, et al. 2017 Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions. J. Biol. Chem. 292 9637–9651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pogoryelova O, González Coraspe JA, Nikolenko N, et al. 2018 GNE myopathy: From clinics and genetics to pathology and research strategies. Orphanet J. Rare Dis. 13 70

    Article  PubMed  PubMed Central  Google Scholar 

  • Revel-Vilk S, Shai E, Turro E, et al. 2018 GNE variants causing autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood 132 1851–1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ro LS, Lee-Chen GJ, Wu YR, et al. 2005 Phenotypic variability in a Chinese family with rimmed vacuolar distal myopathy. J. Neurol. Neurosurg. Psychiatry 76 752–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Rui B, Chuanqiang P, Huifang W, et al. 2017 GNE myopathy in a Chinese male with a novel homozygous mutation. J. Clin. Neurosci. 39 68–72

    Article  PubMed  Google Scholar 

  • Saechao C, Valles-Ayoub Y, Esfandiarifard S, et al. 2010 Novel GNE mutations in hereditary inclusion body myopathy patients of non-Middle Eastern descent. Genet. Test. Mol. Biomarkers 14 157–162

    Article  PubMed  CAS  Google Scholar 

  • Saito F, Tomimitsu H, Arai K, et al. 2004 A Japanese patient with distal myopathy with rimmed vacuoles: missense mutations in the epimerase domain of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene accompanied by hyposialylation of skeletal muscle glycoproteins. Neuromuscul. Disord. 14 158–161

    Article  PubMed  CAS  Google Scholar 

  • Sarszegi Z, Bognar E, Gaszner B, et al. 2012 BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases. Mol. Cell. Biochem. 365 129–137

    Article  PubMed  CAS  Google Scholar 

  • Schmitt RE, Iv DYS, Cho DS, et al. 2022 Myogenesis defects in a patient-derived iPSC model of hereditary GNE myopathy. NPJ Regen. Med. 7 48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sela I, Krentsis IM, Shlomai Z, et al. 2011 The proteomic profile of hereditary inclusion body myopathy. PLoS One 6 e16334

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Sela I, Yakovlev L, Becker Cohen M, et al. 2013 Variable phenotypes of knockin mice carrying the M712T GNE mutation. Neuromolecular Med. 15 180–191

    Article  PubMed  CAS  Google Scholar 

  • Seppala R, Lehto VP and Gahl WA 1999 Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Med. Genet. 64 1563–1569

    CAS  Google Scholar 

  • Sharma S, Chanana P, Bharadwaj R, et al. 2022 Functional characterization of GNE mutations prevalent in Asian subjects with GNE myopathy, an ultra-rare neuromuscular disorder. Biochimie 199 36–45

    Article  PubMed  CAS  Google Scholar 

  • Sheerin UM, Lane RJM, Rakowicz W, et al. 2010 PONM14 A novel homozygous missense mutation in the GNE gene of two brothers with hereditary inclusion body myopathy type 2. J. Neurol. Neurosurg. Psychiatry 81 e64–e64

    Article  Google Scholar 

  • Sim JE, Park H, Shin HY, et al. 2013 Clinical characteristics and molecular genetic analysis of Korean patients with GNE myopathy. Yonsei. Med. J. 54 578–582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R and Arya R 2016 GNE myopathy and cell apoptosis: a comparative mutation analysis. Mol. Neurobiol. 53 3088–3101

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Chaudhary P and Arya R 2018 Role of IGF-1R in ameliorating apoptosis of GNE deficient cells. Sci. Rep. 8 7323

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Soule T, Phan C, White C, et al. 2018 GNE myopathy with novel mutations and pronounced paraspinal muscle atrophy. Front. Neurol. 9 942

  • Stober A, Aleo A, Kuhl V, et al. 2010 Novel missense mutation p. A310P in the GNE gene in autosomal-recessive hereditary inclusion-body myopathy/distal myopathy with rimmed vacuoles in an Italian family. Neuromuscul. Disord. 20 335–336

    Article  PubMed  Google Scholar 

  • Su F, Miao J, Liu X, et al. 2018 Distal myopathy with rimmed vacuoles: Spectrum of GNE gene mutations in seven Chinese patients. Exp. Ther. Med. 16 1505–1512

    PubMed  PubMed Central  Google Scholar 

  • Tajik N, Tajik M, Mack I, et al. 2017 The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 56 2215–2244

    Article  PubMed  CAS  Google Scholar 

  • Tanboon J 2014 A novel mutation of the GNE gene in distal myopathy with rimmed vacuoles: a case with inflammation. Case Rep. Neurol. 6 55–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasca G, Ricci E, Monforte M, et al. 2012 Muscle imaging findings in GNE myopathy. J. Neurol. 259 1358–1365

    Article  PubMed  Google Scholar 

  • Tomimitsu H, Ishikawa K, Shimizu J, et al. 2002 Distal myopathy with rimmed vacuoles: Novel mutations in the GNE gene. Neurology 59 451–454

    Article  PubMed  CAS  Google Scholar 

  • Tomimitsu H, Shimizu J, Ishikawa K, et al. 2004 Distal myopathy with rimmed vacuoles (DMRV) New GNE mutations and splice variant. Neurology 62 1607–1610

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Tempel W, Nedyalkova L, et al. 2009 Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS ONE 4

  • Ureshino RP, Erustes AG, Bassani TB, et al. 2019 The interplay between Ca2+ signaling pathways and neurodegeneration. Int. J. Mol. Sci. 20 6004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Bunderen CC, Meijer RI, Lips P, et al. 2021 Titrating growth hormone dose to high-normal IGF-1 levels has beneficial effects on body fat distribution and microcirculatory function despite causing insulin resistance. Front. Endocrinol. 11 619173

    Article  Google Scholar 

  • Vasconcelos OM, Raju R and Dalakas MC 2002 GNE mutations in an American family with quadriceps-sparing IBM and lack of mutations in s-IBM. Neurology 59 1776–1779

    Article  PubMed  CAS  Google Scholar 

  • Wang Y and Mandelkow E 2016 Tau in physiology and pathology. Nat. Rev. Neurosci. 17 5–21

    Article  PubMed  Google Scholar 

  • Weidemann W, Stelzl U, Lisewski U, et al. 2006 The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett. 580 6649–6654

    Article  PubMed  CAS  Google Scholar 

  • Weihl CC, Miller SE, Zaidman CM, et al. 2011 Novel GNE mutations in two phenotypically distinct HIBM2 patients. Neuromuscul. Disord. 21 102–105

    Article  PubMed  Google Scholar 

  • Xu X, Wang AQ, Latham LL, et al. 2017 Safety, pharmacokinetics and sialic acid production after oral administration of N-acetylmannosamine (ManNAc) to subjects with GNE myopathy. Mol. Genet. Metab. 122 126–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Xiang J, Luan X, et al. 2022 Novel compound heterozygous mutations in a GNE myopathy with congenital thrombocytopenia: A case report and literature review. Clin. Case Rep. 10 e05659

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav R, Devi SS, Oswalia J, et al. 2022a Role of HSP70 chaperone in protein aggregate phenomenon of GNE mutant cells: Therapeutic lead for GNE Myopathy. Int. J. Biochem. Cell Biol. 149 35777599

    Article  Google Scholar 

  • Yadav R, Oswalia J, Ghosh A, et al. 2022b Effect of GNE mutations on cytoskeletal network proteins: potential gateway to understand pathomechanism of GNEM. Neuromolecular Med. 24 452–468

    Article  PubMed  CAS  Google Scholar 

  • Yardeni T, Choekyi T, Jacobs K, et al. 2011 Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50 8914–8925

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa T, Malicdan MCV, Cho A, et al. 2014 Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137 2670–2679

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshioka W, Miyasaka N, Okubo R, et al. 2020 Pregnancy in GNE myopathy patients: A nationwide repository survey in Japan. Orphanet J. Rare Dis. 15 245

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshioka W, Shimizu R, Takahashi Y, et al. 2022a Extra-muscular manifestations in GNE myopathy patients: A nationwide repository questionnaire survey in Japan. Clin. Neurol. Neurosurg. 212 34871992

    Article  Google Scholar 

  • Yoshioka W, Yamamoto K, Oya Y, et al. 2022b Multidimensional analyses of the pathomechanism caused by the non-catalytic GNE variant, c.620A>T, in patients with GNE myopathy. Sci. Rep. 12 21806

  • Zhang KY, Duan HQ, Li QX, et al. 2021 Expanding the clinicopathological-genetic spectrum of GNE myopathy by a Chinese neuromuscular centre. J. Cell Mol. Med. 25 10494–10503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Yin X, Yu X, et al. 2023 Metformin protects fibroblasts from patients with GNE myopathy by restoring autophagic flux via an AMPK/mTOR-independent pathway. Biomed. Pharmacother. 164 114958

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang Z, Hong D, et al. 2015 Journal of the Neurological Sciences Mutational spectrum and clinical features in 35 unrelated mainland Chinese patients with GNE myopathy. J. Neurol. Sci. 354 21–26

    Article  PubMed  CAS  Google Scholar 

  • Zhen C, Guo F, Fang X, et al. 2014 A family with distal myopathy with rimmed vacuoles associated with thrombocytopenia. Neurol. Sci. 35 1479–1481

    Article  PubMed  Google Scholar 

  • Zhu W, Mitsuhashi S, Yonekawa T, et al. 2017 Missing genetic variations in GNE myopathy: Rearrangement hotspots encompassing 5′UTR and founder allele. J. Hum. Genet. 62 159–166

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Eto M, Mitsuhashi S, et al. 2018 GNE myopathy caused by a synonymous mutation leading to aberrant mRNA splicing. Neuromuscul. Disord. 28 154–157

    Article  PubMed  Google Scholar 

  • Zieger B, Boeckelmann D, Anani W, et al. 2022 Novel GNE gene variants associated with severe congenital thrombocytopenia and platelet sialylation defect. Thromb. Haemost. 122 1139–1146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the guidance and technical advice from Prof. Alok Bhattacharya and Prof. Sudha Bhattacharya, Ashoka University, Sonepat, Haryana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Arya.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Corresponding editor: Rakesh K Mishra

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashangva, F., Singh, S., Oswalia, J. et al. Understanding pathophysiology of GNE myopathy and current progress towards drug development. J Biosci 49, 29 (2024). https://doi.org/10.1007/s12038-023-00414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00414-7

Keywords

Navigation