Skip to main content
Log in

Nickel–cobalt layered double hydroxide as a saturable absorber for continuous wave mode-locked laser

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The nickel–cobalt (NiCo) layered double hydroxide (LDH) is prepared by ultrasonic liquid phase-assisted exfoliation method and dispersed onto mirror forming saturable absorber (SA). With NiCo-LDH SA, a continuous wave mode-locked laser at 1065.9 nm with a maximum output power of 1.72 W was achieved with a repetition frequency of 69 MHz and a pulse width of 18 ps. To the best of our knowledge, this is the first implementation of the NiCo-LDH as a SA for continuous wave mode-locked laser operation, which demonstrates the great potential of the NiCo-LDH for integration into lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Y. Abe, K. Meguriya, T. Matsuzaki et al., Micromanipulation of amyloplasts with optical tweezers in Arabidopsis stems[J]. Plant Biotechnol. 37(4), 405–415 (2020). https://doi.org/10.5511/plantbiotechnology.20.1201a

    Article  Google Scholar 

  2. R.W. Waynant, I.K. Ilev, I. Gannot, Mid–infrared laser applications in medicine and biology[J]. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 359(1780), 635–644 (2001). https://doi.org/10.1098/rsta.2000.0747

    Article  ADS  Google Scholar 

  3. E. Khalkhal, M. Rezaei-Tavirani, M.R. Zali et al., The evaluation of laser application in surgery: a review article[J]. J. Lasers Med. Sci. 10(Suppl 1), S104 (2019). https://doi.org/10.15171/jlms.2019.S18

    Article  Google Scholar 

  4. Z. Xue, F. Shen, J. Li et al., MEMS modulator-based mid-infrared laser heterodyne radiometer for atmospheric remote sensing[J]. Front. Phys. 10, 945995 (2022). https://doi.org/10.3389/fphy.2022.945995

    Article  Google Scholar 

  5. J. Bogusławski, Y. Wang, H. Xue et al., Graphene actively mode-locked lasers[J]. Adv. Func. Mater. 28(28), 1801539 (2018). https://doi.org/10.1002/adfm.201801539

    Article  Google Scholar 

  6. M. Li, S. Zhao, K. Yang et al., Diode-pumped actively Q-switching and mode-locking Nd:GdVO4 laser[J]. Laser Phys. Lett. 5(10), 722–725 (2008). https://doi.org/10.1002/lapl.200810065

    Article  ADS  Google Scholar 

  7. F. Lou, X. Cui, X. Sheng et al., Large-diameter indium antimonide microwire based broadband and robust optical switch[J]. Sci. China Phys. Mech. Astron. 66(2), 224211 (2023). https://doi.org/10.1007/s11433-022-1969-9

    Article  ADS  Google Scholar 

  8. A. Diebold, T. Zengerle, C.G.E. Alfieri et al., Optimized SESAMs for kilowatt-level ultrafast lasers[J]. Opt. Express 24(10), 10512–10526 (2016). https://doi.org/10.1364/OE.24.010512

    Article  ADS  Google Scholar 

  9. Q. Bao, H. Zhang, Y. Wang et al., Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Adv. Func. Mater. 19(19), 3077–3083 (2009). https://doi.org/10.1002/adfm.200901007

    Article  Google Scholar 

  10. P.C. Debnath, K. Park, Y.W. Song, Recent advances in black-phosphorus-based photonics and optoelectronics devices[J]. Small Methods 2(4), 1700315 (2018). https://doi.org/10.1002/smtd.201700315

    Article  Google Scholar 

  11. Y.Y. Lin, P. Lee, J.L. Xu et al., High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser[J]. IEEE Photonics J. 8(4), 1–10 (2016). https://doi.org/10.1109/JPHOT.2016.2581490

    Article  Google Scholar 

  12. Q.H. Wang, K. Kalantar-Zadeh, A. Kis et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  13. Y. Liang, Y. Liu, W. Qiao et al., Optical nonlinearity and laser modulation performance of FeNi-LDH in the mid-infrared region[J]. Opt. Lett. 46(10), 2348–2351 (2021). https://doi.org/10.1364/OL.426287

    Article  ADS  Google Scholar 

  14. E. Cai, X. Kong, S. Zhang et al., Nickel-vanadium layered double hydroxide for a mid-infrared 2 µm Tm: YAG ceramic ultrafast laser[J]. Appl. Opt. 61(20), 6057–6061 (2022). https://doi.org/10.1364/AO.462620

    Article  ADS  Google Scholar 

  15. E. Cai, J. Xu, Y. Liu et al., Passively Q-switched and Q-switched mode-locked Nd:Lu0.15Y0.85VO4 lasers at 1.34 µm with a nickel-cobalt layered double hydroxide saturable absorber[J]. Opt. Mater. Express 12(3), 931–939 (2022). https://doi.org/10.1364/OME.447019

    Article  ADS  Google Scholar 

  16. M. Wang, Y. Xu, Z. Yu et al., Nickel–cobalt layered double hydroxide saturable absorber for a mid-infrared 2 µm Tm:YAG ceramic mode-locked laser[J]. Appl. Phys. B 129(7), 104 (2023). https://doi.org/10.1007/s00340-023-08051-6

    Article  ADS  Google Scholar 

  17. L. Sun, L. Zhang, H.J. Yu et al., 880 nm LD pumped passive mode-locked TEM00 Nd: YVO4 laser based on SESAM[J]. Laser Phys. Lett. 7(10), 711 (2010). https://doi.org/10.1002/lapl.201010051

    Article  ADS  Google Scholar 

  18. T. Wang, S. Zhang, X. Yan et al., 2-Methylimidazole-derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces 9(18), 15510–15524 (2017). https://doi.org/10.1021/acsami.7b02987

    Article  Google Scholar 

  19. X. Gao, Z. Jia, B. Wang et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber[J]. Chem. Eng. J. 419, 130019 (2021). https://doi.org/10.1016/j.cej.2021.130019

    Article  Google Scholar 

  20. X. Zhang, A. Selkirk, S. Zhang et al., MoS2/carbon nanotube core–shell nanocomposites for enhanced nonlinear optical performance[J]. Chem. Eur. J. 23(14), 3321–3327 (2017). https://doi.org/10.1002/chem.201604395

    Article  Google Scholar 

  21. E. Cai, J. Xu, Y. Xia et al., The nonlinear optical properties of Zirconium pentatelluride and its application in ultrafast solid-state lasers[J]. Opt. Laser Technol. 150, 108003 (2022). https://doi.org/10.1016/j.optlastec.2022.108003

    Article  Google Scholar 

  22. C. Hönninger, R. Paschotta, F. Morier-Genoud et al., Q-switching stability limits of continuous-wave passive mode locking[J]. JOSA B 16(1), 46–56 (1999). https://doi.org/10.1364/JOSAB.16.000046

    Article  ADS  Google Scholar 

  23. J.L. Xu, X.L. Li, Y.Z. Wu et al., Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett. 36(10), 1948–1950 (2011). https://doi.org/10.1364/OL.36.001948

    Article  ADS  Google Scholar 

  24. Q. Hao, J. Guo, L. Yin et al., Watt-level ultrafast bulk laser with a graphdiyne saturable absorber mirror[J]. Opt. Lett. 45(19), 5554–5557 (2020). https://doi.org/10.1364/OL.404540

    Article  ADS  Google Scholar 

  25. Z. Yang, L. Gao, H. Chen et al., Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers[J]. Opt. Laser Technol. 142, 107199 (2021). https://doi.org/10.1016/j.optlastec.2021.107199

    Article  Google Scholar 

  26. Z. Yang, L. Han, Q. Yang et al., Two-dimensional tellurium saturable absorber for ultrafast solid-state laser[J]. Chin. Opt. Lett. 19(3), 031401 (2021). https://doi.org/10.3788/col202119.031401

    Article  ADS  Google Scholar 

  27. W. Liu, M. Liu, J. Yin et al., Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method[J]. Nanoscale 10(17), 7971–7977 (2018). https://doi.org/10.1039/c8nr00471d

    Article  Google Scholar 

  28. B. Zhang, F. Lou, R. Zhao et al., Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Opt. Lett. 40(16), 3691–3694 (2015). https://doi.org/10.1364/OL.40.003691

    Article  ADS  Google Scholar 

  29. G. Zhao, J. Hou, Y. Wu et al., Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation[J]. Adv. Opt. Mater. 3(7), 937–942 (2015). https://doi.org/10.1002/adom.201500012

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12174211, 12174212).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CQ methodology, LD software, XH validation, FL formal analysis, CQ investigation, XH resources, FL and SZ data curation, JZ and GS writing—original draft preparation, LD writing—review and editing, LD visualization, FL supervision, SZ and ZW project administration, XW and ZW funding acquisition, SZ and XW. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xia Wang or Zhihong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Qi, C., Hu, X. et al. Nickel–cobalt layered double hydroxide as a saturable absorber for continuous wave mode-locked laser. Appl. Phys. B 130, 39 (2024). https://doi.org/10.1007/s00340-024-08172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08172-6

Navigation