Skip to main content
Log in

Fundamental Solution in Functionally Graded Non Local Couple Stress Thermoelastic Solid with Voids

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

We construct the fundamental solution of system of differential equations in the theory of functionally graded non local couple stress thermoelastic solid with voids in case of steady oscillations in terms of elementary functions. Some properties of fundamental solution are also established. Some special cases are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Lord and Y. Shulman, “A generalized dynamical theory of thermo-elasticity,” J. Mech. Phys. Solid 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  Google Scholar 

  2. M. Bio, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys. 27, 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  ADS  MathSciNet  Google Scholar 

  3. A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  Google Scholar 

  4. J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds (Oxford University Press, 2009).

    Book  Google Scholar 

  5. R. B Hetnarski. and J. Ignaczak, “Generalized thermoelasticity,” J. Thermal Stress. 22, 451–476 (1999). https://doi.org/10.1080/014957399280832

    Article  MathSciNet  Google Scholar 

  6. W. Voigt, “Theoretische studien uber die elastizitastsverhaltnisse der kristalle,” Abh. Ges. Wiss. Gottingen. 34, 3–51 (1887).

    Google Scholar 

  7. E. Cosserat and F. Cosserat, Theory des Corps Deformables (A. Herman Et. Fils, Paris, 1909).

    Google Scholar 

  8. R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Ration. Mech. Anal. 11 (1), 385–414 (1962). https://doi.org/10.1007/BF00253945

    Article  MathSciNet  Google Scholar 

  9. R. D. Mindlin and H. F Tiersten, “Effects of couple-stresses in linear elasticity,”. Arch. Ration. Mech. Anal. 11, 415–444 (1962).https://doi.org/10.1007/BF00253946

    Article  MathSciNet  Google Scholar 

  10. A. E. Green and R. S. Rivlin, “Simple force and stress multipoles,” Arch. Rat. Mech. Anal. 16, 325–354 (1964). https://doi.org/10.1007/BF00281725

    Article  MathSciNet  Google Scholar 

  11. R. D. Mindlin, “Influence of couple-stresses on stress-concentrations,” Exp. Mech. 3, 1–7 (1963). https://doi.org/10.1007/BF02327219

    Article  Google Scholar 

  12. W. Nowacki, “ Couple-stresses in the theory of thermoelasticity: Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids,” in Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia, Ed. by H. Parkus and L. I. Sedov (Springer, Vienna, 1968), pp. 259–278. https://doi.org/10.1007/978-3-7091-5581-3_17

  13. A. Anthonie, “Effects of couple stresses on the elastic bending of beams,” Int. J. Solids Struct. 37, 1003–1018 (2000). https://doi.org/10.1016/S0020-7683(98)00283-2

    Article  Google Scholar 

  14. V. A. Lubarda and X. Markenscoff, “ Conservation integrals in couple stress elasticity,” J. Mech. Phys Solids 3, 553–564 (2000). https://doi.org/10.1016/S0022-5096(99)00039-3

    Article  ADS  MathSciNet  Google Scholar 

  15. V. A. Lubarda, “Cicular inclusions in anti-plane strain couple stress elasticity,” Int. J. Solids Struct. 40, 3827–3851 (2003). https://doi.org/10.1016/S0020-7683(03)00227-0

    Article  Google Scholar 

  16. D. Tian-min, “Renewal of basic laws and principles for polar continuum theories (II) – Micromorphic continuum theory and couple stress theory” Appl. Math. Mech. 24 (10), 1126–1133 (2003). https://doi.org/10.1007/BF02438101

    Article  MathSciNet  Google Scholar 

  17. J. Luo, G. Li, and W. Zhong, “Symplectic solution for three dimensional couple stress problem and its variational principle,” Acta Mech. Sin. 21 (1), 70–75 (2005). https://doi.org/10.1007/s10409-005-0012-3

    Article  ADS  Google Scholar 

  18. M. M. Selim, “Orthotropic elastic medium under the effect of initial and couple stresses,” Appl. Mech. Computat. 181 (1), 185–192 (2006). https://doi.org/10.1016/j.amc.2006.01.023

    Article  MathSciNet  Google Scholar 

  19. H. M. Shodja and M. Ghagisaeidi, “Effects of couple stresses on anti plane problems of piezoelectric media with inhomogeneties,” Eur. J. Mech. A/Solids 26, 647–658 (2007). https://doi.org/10.1016/j.euromechsol.2006.09.001

    Article  ADS  MathSciNet  Google Scholar 

  20. P. A.Gourdiotis and H. G. Georgiadis, “An opporroach based on distributed dislocations and dislocations for crack problems in couple-stress elasticity,” Int. J. Solids Struct. 45 (21), 5521–5539 (2008). https://doi.org/10.1016/j.ijsolstr.2008.05.012

    Article  Google Scholar 

  21. S. K. Park and X. L. Gao, “Variational formulation of a modified couple stress theory and its application to a simple shear problem,” ZAMP 59 (5), 904–917 (2008). https://doi.org/10.1007/s00033-006-6073-8

    Article  ADS  MathSciNet  Google Scholar 

  22. J. H. Luo, Q. S. Li and G. A. Liu, “Biorthogonality relationship for three-dimensional couple stress problem,” Sci. China, Ser. G: Phys., Mech. Astron., 52 (2), 270–276 (2009). https://doi.org/10.1007/s11433-009-0034-0

    Article  ADS  Google Scholar 

  23. S. Liu and W. Su, “Topology optimization of couple-stress material structures,” Struct. Multidisc. Optim. 40, 319–327 (2010). https://doi.org/10.1007/s00158-009-0367-3

    Article  MathSciNet  Google Scholar 

  24. J. Chung and A. M. Wass, “The inplane orthotropic couplet stress elasticity constant of elliptical cell honey combs,” Int. J. Eng. Sci. 48 (11), 1123–1136 (2010). https://doi.org/10.1007/BF01181826

    Article  Google Scholar 

  25. M. U. Nikabadze, “Relation between the stress and couple-stress tensors in the micro-continuum theory of elasticity,” Moscow Univ. Mech. Bull. 66 (6), 141–143 (2011). https://doi.org/10.3103/S0027133011060045

    Article  Google Scholar 

  26. U. Güven, “Nonlocal longitudinal stress waves with modified couple stress theory,” Acta Mech. 221 (3–4), 321–325 (2011). https://doi.org/10.1007/s00707-011-0500-4

  27. R. Kumar, K. Kumar. and R. C. Nautiyal, “Plane waves and fundamental solution in couple stress generalized thermoelastic solid” Afrika Math. 25 (3), 591–603 (2014). https://doi.org/10.1007/s13370-013-0136-8

    Article  MathSciNet  Google Scholar 

  28. S. Itou, “Effect of couple-stresses on the transient dynamic stress intensity factors for a crack in an infinite elastic medium under an impact stress wave,” Int. J. Fracture 183 (1), 99–104 (2013). https://doi.org/10.1007/s10704-013-9861-0

    Article  Google Scholar 

  29. R. B. Hetnarsk, “The fundamental solution of the coupled thermoelastic problem for small times,” J. Therm. Stress. 9 (2), 131–154 (1986). https://doi.org/10.1080/01495738608961894

    Article  Google Scholar 

  30. R. B. Hetnarski, “Solution of the coupled problem of thermoelasticity in the form of series of functions,” Arch. Mech. Stosow. 16, 919–941 (1964).

    MathSciNet  Google Scholar 

  31. D. Iesan, “On the theory of thermoelasticity without energy dissipation” J. Therm. Stress. 21, 295–307 (1998). https://doi.org/10.1080/01495739808956148

    Article  MathSciNet  Google Scholar 

  32. V. D. Kupradze, T. G. Gegelia, and M. O. Basheleishvili, Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (North-Holland Publ. Comp., Amsterdam, 1979)

    Google Scholar 

  33. M. E. Gurtin, “The linear theory of elasticity,” in Handbuch der Physik, Ed by. C. Truesdel, Vol. VIa/2 (Springer, Berlin, 1972).

  34. W. Nowacki, Dynamic Problems of Thermoelasticity (Noordhoff, Leiden, 1975).

    Google Scholar 

  35. M. Svanadze, “The fundamental matrix of linearized equations of the theory of elastic mixtures,” Proc. I Vekua Inst. Appl. Math. Tbilisi State. Univ. 23, 133–148 (1988).

  36. M. Svanadze, “The fundamental solution of the oscillation equations of the thermoelasticity theory of mixtures of two solids” J. Therm Stress. 19, 633–648 (1996). https://doi.org/10.1080/01495739608946199

    Article  MathSciNet  Google Scholar 

  37. M. Svanadze, “Fundamental solutions of the equations of the theory thermoelasticity with microtemperatures,” J. Therm Stress. 27, 151–170 (2004). https://doi.org/10.1080/01495730490264277

    Article  MathSciNet  Google Scholar 

  38. M. Svanadze, “Fundamental solutions of the equations of steady oscillations in the theory of microstretch elastic solids,” Int. J. Eng. Sci. 42, 1897–1910 (2004). https://doi.org/10.1016/j.ijengsci.2004.07.001

    Article  MathSciNet  Google Scholar 

  39. M. Svanadze, V. Tibullo, and V. Zampoli, “Fundamental solution in the theory of micropolar thermoelasticity without energy dissipation,” J. Therm Stress. 29, 57–66 (2006). https://doi.org/10.1080/01495730500257417

    Article  MathSciNet  Google Scholar 

  40. M. Ciarletta, A. Scalia, and M. Svanadze, “Fundamental solution in the theory of micropolar thermoelasticity for materials with voids,” J. Therm Stress. 30, 213–229 (2007). https://doi.org/10.1080/01495730601130901

    Article  MathSciNet  Google Scholar 

  41. L. Hörmander, Linear Partial Differential Operators (Springer-Verlag, Berlin, 1963).

    Book  Google Scholar 

  42. L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  43. K. Sharma and P. Kumar, “Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids” J. Therm Stress. 36, 94–111(2013). https://doi.org/10.1080/01495739.2012.720545

    Article  Google Scholar 

  44. E. Scarpetta, “On the fundamental solution in micropolar elasticity with voids,” J. Therm Stress. 82, 151–158 (1990). https://doi.org/10.1007/BF01173624

    Article  MathSciNet  Google Scholar 

  45. H. Kolsky, Stress Waves in Solids (Dover Publ., New York, 1963).

    Google Scholar 

  46. M. Bachher and N. Sarkar, “Non-local theory of thermoelastic materials with voids and functional derivative heat transfer” Waves Random Complex Media 29, 1–19 (2018). https://doi.org/10.1080/17455030.2018.1457230

    Article  Google Scholar 

  47. R. K. Sahrawat, Poonam, and K. Kumar, “Plane wave and fundamental solution in non-local couple stress micropolar thermoelastic solid without energy dissipation” J. Therm Stress. 44, 1–20 (2020). https://doi.org/10.1080/01495739.2020.1860728

    Article  Google Scholar 

  48. Poonam, R. K. Sahrawat, and K. Kumar, “Plane wave propagation in functionally graded isotropic couple stress thermoelastic solid media under initial stress and gravity,” Eur. Phys. J. Plus 136, 1–32 (2021). https://doi.org/10.1140/epjp/s13360-021-01097-5

    Article  Google Scholar 

  49. Poonam, R. K. Sahrawat, and K. Kumar, “Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids,” Waves Random Complex Media 136, 1–32 (2021). https://doi.org/10.1080/17455030.2021.1921312

    Article  Google Scholar 

  50. R. K. Sahrawat, Poonam, and K. Kumar, “Wave propagation in nonlocal couple stress thermoelastic solid,” AIP Conf. Proc. 2253, 1–14 (2020). https://doi.org/10.1063/5.0018979

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by CSIR, New Delhi unde Junior Research Fellowship CSIR-Award letter no. 09/1279(11483)/2021-EMR-I through fourth author.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishan Kumar, Sangeeta Malik, Poonam or Ankush Antil.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Malik, S., Poonam et al. Fundamental Solution in Functionally Graded Non Local Couple Stress Thermoelastic Solid with Voids. Mech. Solids 58, 3148–3161 (2023). https://doi.org/10.3103/S0025654423601520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423601520

Keywords:

Navigation