Skip to main content
Log in

Heat Transfer in Anisotropic Micropolar Solids

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper is devoted to the theory of an anisotropic micropolar thermoelastic solid. The requisite equations and notions from pseudotensors algebra and multidimensional geometry are revisited. From the beginning we treat translational displacements as an absolute covariant fields whereas spinor displacements as a contravariant pseudovector. The Helmholtz free energy is employed as a thermodynamic state potential of the following functional arguments: absolute temperature, symmetric parts and accompanying vectors of the linear asymmetric strain tensor and the wryness pseudotensor. The constitutive equations for a general anisotropic micropolar thermoelastic solid including gyrotropic one are derived. That means heat flux vector can be treated as a pseudovector of weight \( + 1\) (or \( - 1\)) algebraically consistent to spinor displacements pseudovector. Nonlinear heat conduction equation and its linearized form are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Lakes, “Elastic and viscoelastic behavior of chiral materials,” Int. J Mech. Sci. 43 (7), 1579–1589 (2001). https://doi.org/10.1016/S0020-7403(00)00100-4

    Article  Google Scholar 

  2. T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1 (1), 018003 (2010). https://doi.org/10.1117/6.0000003

  3. S. K. Tomar and A. Khurana, “Wave propagation in thermo-chiral elastic medium,” Appl. Math. Mod. 37 (22), 9409–9418 (2013). https://doi.org/10.1016/j.apm.2013.04.029

    Article  MathSciNet  Google Scholar 

  4. E. V. Murashkin and Yu. N. Radaev, “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 25 (3), 457–474 (2021). https://doi.org/10.14498/vsgtu1870

    Article  Google Scholar 

  5. H. Neuber, “Über Probleme der Spannungskonzentration im Cosserat-Körper,” Acta Mech. 2, 48–69 (1966). https://doi.org/10.1007/BF01176729

    Article  MathSciNet  Google Scholar 

  6. H. Neuber, “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua,” in Applied Mechanics, Ed. by. H. Görtler (Springer, Berlin, Heidelberg, 1966), pp. 153–158. https://doi.org/10.1007/978-3-662-29364-5_16

    Book  Google Scholar 

  7. W. Nowacki, Theory of Micropolar Elasticity (Springer, 1972). https://doi.org/10.1007/978-3-7091-2720-9

    Book  Google Scholar 

  8. D. Besdo, “Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums,” Acta Mech. 20 (1), 105–131 (1974). https://doi.org/10.1007/BF01374965

    Article  MathSciNet  Google Scholar 

  9. W. Nowacki, Theory of Asymmetric Elasticity (Pergamon Press, Oxford, 1986).

    Google Scholar 

  10. J. Dyszlewicz, Micropolar Theory of Elasticity (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-540-45286-7

    Book  Google Scholar 

  11. E. V. Murashkin and Yu. N. Radaev, “Covariantly constant tensors in Euclid spaces. Elements of the theory,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 2 (52), 106–115 (2022). https://doi.org/10.37972/chgpu.2022.51.1.003

  12. E. V. Murashkin and Yu. N. Radaev, “Covariantly constant tensors in Euclid spaces. Applications to continuum mechanics,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 2 (52), 118–127 (2022). https://doi.org/10.37972/chgpu.2022.51.1.002

  13. Yu. N. Radaev, “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 22 (3), 504–517 (2018). https://doi.org/10.14498/vsgtu1635

    Article  Google Scholar 

  14. E. V. Murashkin and Yu. N. Radaev, “On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 3 (53), 86–100 (2022). https://doi.org/10.37972/chgpu.2022.53.3.010

  15. E. V. Murashkin and Yu. N. Radaev, “Reducing natural forms of hemitropic energy potentials to conventional ones,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 4(54), 108–115 (2022). https://doi.org/10.37972/chgpu.2022.54.4.009

  16. J. A. Schouten, Tensor Analysis for Physicist (Clarendon Press, Oxford, 1965).

    Google Scholar 

  17. I. Sokolnikoff, Tensor Analysis: Theoryand Applications to Geometry and Mechanics of Continua (John Wiley & Sons Inc., New York, 1964).

    Google Scholar 

  18. J. L. Synge and A. Schild, Tensor Calculus (Toronto Univ. Press, Toronto, 1949).

    Book  Google Scholar 

  19. C. Truesdell and R. Toupin, “The classical field theories,” in Principles of Classical Mechanics and Field Theory, Ed. by S. Flügge (Springer Berlin Heidelberg, Berlin, Heidelberg, 1960), pp. 226–858. https://doi.org/10.1007/978-3-642-45943-6_2

  20. A. J. Das, Tensors: the Mathematics of Relativity theory and Continuum Mechanics (Springer, New York, 2007). https://doi.org/10.1007/978-0-387-69469-6

    Book  Google Scholar 

  21. G. B. Gurevich, Foundations of the Theory of Algebraic Invariants (GITTL, Moscow, Leningrad, 1948; Groningen, Noordhoff, 1964).

  22. O. Veblen and T. Y. Thomas, “Extensions of relative tensors,” Trans. Am. Math. Soc. 26, 373-377 (1924). https://doi.org/10.2307/1989146

    Article  MathSciNet  Google Scholar 

  23. O. Veblen, Invariants of Quadratic Differential Forms (Cambridge Univ. Press, Cambridge, 1933).

    Google Scholar 

  24. Yu. N. Radaev and E. V. Murashkin, “Pseudotensor formulation of the mechanics of hemitropic micropolar media,” Probl. Prochn. Plastichn. 82 (4), 399–412 (2020). https://doi.org/10.32326/1814-9146-2020-82-4-399-412

    Article  Google Scholar 

  25. E. V. Murashkin and Yu. N. Radayev, “On a micropolar theory of growing solids,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 24 (3), 424–444 (2020). https://doi.org/10.14498/vsgtu1792

    Article  Google Scholar 

  26. E. V. Murashkin, Y. N. Radaev, “On the theory of linear micropolar hemitropic media,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 4(46), 16–24. (2020) https://doi.org/10.37972/chgpu.2020.89.81.031

  27. E. V. Murashkin, Y. N. Radaev, “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation,” Mech. Solids 58 (3), 802–813 (2023) https://doi.org/10.3103/s0025654423700127

    Article  ADS  Google Scholar 

  28. E. V. Murashkin and Yu. N. Radaev, “Heat conduction of micropolar solids sensitive to mirror reflections of three–dimensional spac,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 165 (2023) (In Print)

  29. V. A. Kovalev, E. V. Murashkin, and Yu. N. Radayev, “On the Neuber theory of micropolarelasticity. A pseudotensor formulation,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 24 (4), 752–761 (2020). https://doi.org/10.14498/vsgtu1799

    Article  Google Scholar 

  30. E. V. Murashkin and Y. N. Radaev, “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity,” Lobachevskii J. Math. 44 (6), 2440–2449 (2023) https://doi.org/10.1134/S1995080223060392

    Article  MathSciNet  Google Scholar 

  31. Yu. N. Radaev, “Tensors with constant components in the constitutive equations of hemitropic micropolar solids,” Mech. Solids 58 (5), 1517–1527 (2023). https://doi.org/10.3103/S0025654423700206

    Article  ADS  Google Scholar 

  32. B. A. Rozenfeld, Multidimensional Spaces (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  33. Yu. N. Radaev and E. V. Murashkin, “Generalized pseudotensor formulations of the Stokes’ integral theorem,” Izv. Saratov Univ. Mat. Mech. Inform. 22 (2), 205–215 (2022). https://doi.org/10.18500/1816-9791-2022-22-2-205-215

    Article  MathSciNet  Google Scholar 

  34. E. V. Murashkin and Yu. N. Radaev, “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 25 (4), 776–786 (2021). https://doi.org/10.14498/vsgtu1883

    Article  Google Scholar 

  35. E. V. Murashkin and Yu. N. Radaev, “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space,” Mech. Solids 57 (2), 205–213 (2022). https://doi.org/10.3103/s0025654422020108

    Article  ADS  Google Scholar 

  36. E. V. Murashkin and Yu. N. Radaev, “Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 1(51), 17–26 (2022). https://doi.org/10.37972/chgpu.2022.51.1.002

  37. E. V. Murashkin and Yu. N. Radaev, “An algebraic algorithm of pseudotensors weights eliminating and recovering,” Mech. Solids 57 (6), 1416–1423 (2022). https://doi.org/10.3103/s0025654422060085

    Article  ADS  Google Scholar 

  38. V. A. Kovalev and Yu. N. Radayev, Elements of the Classical Field Theory: Variational Symmetries and Geometric Invariants (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  39. V. A. Kovalev and Yu. N. Radayev, Wave Problems of Field Theory and Thermomechanics (Saratov Univ., Saratov, 2010) [in Russian].

    Google Scholar 

  40. H. Jeffreys, Cartesian Tensors (Cambridge Univ. Press, Cambridge, 1931).

    Google Scholar 

Download references

Funding

The present study was financially supported by the Russian Science Foundation (project no. 23-21-00262).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Murashkin or Yu. N. Radayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkin, E.V., Radayev, Y.N. Heat Transfer in Anisotropic Micropolar Solids. Mech. Solids 58, 3111–3119 (2023). https://doi.org/10.3103/S0025654423700255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423700255

Keywords:

Navigation