Skip to main content
Log in

Effect of Aluminum, Copper and Manganese on the Structure and Properties of Cast Irons

  • CAST IRONS
  • Published:
Metal Science and Heat Treatment Aims and scope

A Correction to this article was published on 01 March 2024

This article has been updated

The effect of aluminum, copper and manganese on the structure, mechanical and tribotechnical properties of cast irons is studied. Cast irons of three types (aluminum-alloyed, aluminum- and copper-alloyed, and aluminum-, copper- and manganese-alloyed ones) are obtained by casting into sand-liquid-glass molds. The structure of the iron containing aluminum and copper acquires nanosize particles of phase ε-Cu promoting increase in the hardness and strength of the material. Alloying with aluminum, copper and manganese yields a structure where pearlite is accompanied by microvolumes of martensite and retained austenite. Particles of ε-Cu are detectable both within the colonies of lamellar pearlite and inside martensite crystals. The presence of martensite in the structure of the cast iron raises its wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

References

  1. W. Osterle, C. Prietzel, Kloss, and A. I. Dmitriev, “On the role of copper in brake friction materials,” Tribol. Int., 43, 2317 – 2326 (2010).

  2. J. O. Agunsoye, S. A. Bello, S. B. Hassan, et al., “The effect of copper addition on the mechanical and wear properties of grey cast iron,” JMMC Eng., 2, 470 – 483 (2014).

    Article  Google Scholar 

  3. B. Zhang, B. Xu, and Yi Xu, “Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts,” Tribol. Int., 44(7), 878 – 886 (2011).

  4. W. Zhai,W. Lu, and X. Liu, “Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces,” Tribol. Int., 129, 75 – 81 (2019).

    Article  CAS  Google Scholar 

  5. A. C. P. Rodrigues,W. Oesterle, and T. Gradt, “Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite,” Tribol. Int., 110, 103 – 112 (2017).

    Article  CAS  Google Scholar 

  6. M. Eroglu, “Boride coatings on steel using shielded metal arc welding electrode: microstructure and hardness,” Surf. Coat. Technol., 203, 2229 – 2235 (2009).

    Article  CAS  Google Scholar 

  7. G. I. Silman, V. V. Kamynin, and V. V. Goncharov, “About the mechanisms of copper influence on formation of structure in cast iron,” Metalloved. Term. Obrab. Met., No. 9, 16 – 22 (2007).

  8. I. Le May and L. Schetky, Copper in Iron and Steel, McD,Wiley Interscience, New York (1982).

  9. A. A. Bataev, N. V. Stepanova, I. A. Bataev, et al., “Special features of precipitation of ε-Cu phase in cast irons alloyed with copper and aluminum,” Met. Sci. Heat Treat., 60(3 – 4), 150 – 157 (2018).

    Article  CAS  Google Scholar 

  10. N. V. Stepanova, I. A. Bataev, Y. Kang, et al. “Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition,” Mater. Charact., 130, 260 – 269 (2017).

    Article  CAS  Google Scholar 

  11. S. Upadhyay and K. K. Saxena, “Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview,” Mater. Today, Proceed., 26(2), 2462 – 2470 (2020).

    Article  CAS  Google Scholar 

  12. H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, “Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron,” J. Min. Metall. B, 57(1), 145 – 154 (2021).

    Article  CAS  Google Scholar 

  13. L. N. Garcia, A. J. Tolley, F. D. Carazo, and R. E. Boeri, “Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons,” Mater. Sci. Technol., 35(18), 2252 – 2258 (2019).

    Article  CAS  Google Scholar 

  14. G. I. Sil’man, V. V. Kamynin, and A. A. Tarasov, “Effect of copper on structure formation in cast iron,” Met. Sci. Heat Treat., 45(7 – 8), 254 – 258 (2003).

  15. K. Shubhank and Y. Kang, “Critical evaluation and thermodynamic optimization of Fe – Cu, Cu – C, Fe – C binary systems and Fe – Cu – C ternary system,” CALPHAD, 45, 127 – 137 (2014).

    Article  CAS  Google Scholar 

  16. G. I. Sil’man, “About retrograde solidus and stratification of melt in the Fe – Cu and Fe – Cu – C systems,” Met. Sci. Heat Treat., 51(1 – 2), 19 – 24 (2009).

  17. D. V. Lazurenko, G. I. Alferova, K. I. Emurlaev, et al., “Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam cladding using powder mixtures,” Surf. Coat. Technol., 395, Art. 125927 (2020).

  18. G. W. Zhang, Y. Y. Kang, M. J. Wang, et al., “Atomic diffusion behavior and diffusion mechanism in Fe – Cu bimetal casting process studied by molecular dynamics simulation and experiment,” Mater. Res. Express., 7, Art. 096519 (2020).

  19. K. Chen, X. Chen, Z. Wang, and H. M. R. Sandstrom, “Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure,” J. Alloys Compd., 763, 592 – 605 (2018).

    Article  CAS  Google Scholar 

  20. D. M. Buck, “Copper in steel — the influence on corrosion,” J. Ind. Eng. Chem., 5(6), 447 – 452 (1913).

    Article  CAS  Google Scholar 

  21. B. Li, H. Qu, and Y. Lang, “Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels,” Corros. Sci., 173, Art. 108791 (2020).

  22. X. Y. Zhang, B. Wu, X. X. Wei, et al., “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM,” Corros. Sci., 130, 143 – 152 (2018).

    Article  Google Scholar 

  23. Z. X. Zhang, G. Lin and Z. Xu, “Effects of light pre-deformation on pitting corrosion resistance of copper – bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., 205, 419 – 424 (2008).

    Article  CAS  Google Scholar 

  24. S. Jeon, S. Kim, I. Lee, et al., “Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels,” Corros. Sci., 53, 1408 – 1416 (2011).

    Article  CAS  Google Scholar 

  25. J. Zhang and D. J. Young, “Effect of copper on metal dusting of austenitic stainless steels,” Corros. Sci., 49, 1450 – 1467 (2007).

    Article  CAS  Google Scholar 

  26. A. Hegde and S. Sharma, “Machinability study of manganese alloyed austempered ductile iron,” J. Braz. Soc. Mech. Sci., 40(7), Art. 338 (2018).

  27. R. K. Dasgupta, D. K. Mondal, and A. K. Chakrabarti, “Evolution of microstructures during austempering of ductile irons alloyed with manganese and copper,” Metall. Mater. Trans. A, 44A, 1376 – 1387 (2013).

    Article  Google Scholar 

  28. Susil K. Putatunda and Pavan K. Gadicherla, “Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure,” Mater. Sci. Eng. A, 268, 15 – 31 (1990).

    Article  Google Scholar 

  29. Susil K. Putatunda and Pavan K. Gadicherla, “Effect of austempering time on mechanical properties of a low manganese austempered ductile iron,” J. Mater. Eng. Perform., 9(2), 193 – 203 (2000).

    Article  CAS  Google Scholar 

  30. Jian Yang, Yu-Nan Wang, Xiao-Ming Ruan, et al., “Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe – Mn – Al – C steels,” Metall. Mater. Trans. B, 46B, 1365 – 1375 (2015).

    Article  Google Scholar 

  31. L. S. Pechenkina, “Effect of the content of structure-forming components on the hardness of low-carbon white cast irons,” Vestn. Voronezh. Gos. Tekh. Univ., 13(3), 134 – 138 (2017).

    Google Scholar 

  32. R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the properties of working layer of centrifugally cast indefinite forming rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 14(3), 78 – 89 (2016).

  33. R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the performance of centrifugally cast indefinite chilled cast iron rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 17(1), 32 – 36 (2019).

  34. R. H. Juneja, A. K. Chakrabarti, A. K. Basak, and A. Bhattacharya, “Austempering ductile iron alloyed copper and manganese,” Foundry Manag. Tech., 117(2), 64 – 67 (1989).

    Google Scholar 

  35. H. Bayati, R. Elliott, and G. W. J. Lorimer, “Stepped heat treatment for austempering of high manganese alloyed ductile iron,” Mater. Sci. Tech., 11(10), 1007 – 1013 (1995).

    Article  CAS  Google Scholar 

  36. N. V. Stepanova, A. A. Bataev, A. A. Sitnikov, and T. N. Oskolkova, “Peculiarities of copper precipitation in hypereutectoid steels,” Metallurgist, 66(11 – 12), 1388 – 1400 (2023). https://doi.org/10.1007/s11015-023-01454-y

    Article  CAS  Google Scholar 

  37. N. V. Stepanova, A. A. Bataev, A. A. Sitnikov, and T. N. Oskolkova, “Wear resistance of hypereutectoid steel alloyed with copper and aluminum,” Obrab. Met.: Tekhnol., Oborud., Instr., 4(69), 72 – 29 (2015). https://doi.org/10.17212/1994-6309-2015-4-72-79

Download references

The study has been performed at the core facility “Structure, Mechanical and Physical Properties of Materials” (Agreement with the Ministry of Science and Higher Education of the Russian Federation No. 13TsKP.210034, 075-15-2021-698).

The study funded by a grant Russian Science Foundation No. 23-79-00066, https://rscf.ru/project/23-79-00066/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Stepanova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 53 – 58, October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, N.V., Mikhalev, R.I., Tarasova, T.D. et al. Effect of Aluminum, Copper and Manganese on the Structure and Properties of Cast Irons. Met Sci Heat Treat 65, 651–656 (2024). https://doi.org/10.1007/s11041-024-00984-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-024-00984-9

Key words

Navigation