Skip to main content
Log in

Bergenin ameliorates the progression of atherosclerosis by inhibiting oxidative stress, inflammation, and monocytes adhesion in human umbilical vein endothelial cells

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Bergenin is a type of polyphenol derived from various medicinal plants and has multiple biological functions, including antioxidant, anti-cancerous, and anti-inflammatory activity. However, the role of bergenin in atherosclerosis (AS) development has not been detected yet. Here, human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of bergenin on TNF-α-induced oxidative stress, inflammation, and monocyte adhesion in vitro.

Methods

Cell viability of HUVECs was assessed by cell counting kit-8 (CCK-8) assay. Western blotting was performed to evaluate the levels of apoptosis- or signaling-related proteins. Intracellular oxidative stress levels were detected by evaluating reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in HUVECs. The effects of bergenin on monocyte adhesion to HUVECs were detected by measuring the protein and expression levels of adhesion molecules.

Results

Bergenin promoted the viability and inhibited the apoptosis in TNF-α-treated HUVECs. The increased oxidative stress induced by TNF-α was significantly suppressed by bergenin in a concentration-dependent manner. Bergenin reduced the protein and expression levels of adhesion molecules in TNF-α-treated HUVECs. Human leukemic monocyte (U973) adhesion to HUVECs was promoted by TNF-α treatment and significantly inhibited by bergenin. In addition, bergenin blocked the activation of NF-κB signaling in TNF-α-treated HUVECs.

Conclusion

Bergenin inhibited TNF-α-induced apoptosis and oxidative stress in HUVECs and suppressed monocyte adhesion to HUVECs by inactivating NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aggarwal D et al (2016) Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur J Pharmacol 791:611–621

    Article  CAS  PubMed  Google Scholar 

  • Ahmad T et al (2022) Vasorelaxant and antihypertensive effects of bergenin on isolated rat aorta and high salt-induced hypertensive rats. Evid Based Complement Altern Med 2022:4886193

    Article  Google Scholar 

  • Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barai P et al (2019) Neuroprotective effects of bergenin in Alzheimer’s disease: investigation through molecular docking, in vitro and in vivo studies. Behav Brain Res 356:18–40

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2020) Bergenin-activated SIRT1 inhibits TNF-α-induced proinflammatory response by blocking the NF-κB signaling pathway. Pulm Pharmacol Ther 62:101921

    Article  CAS  PubMed  Google Scholar 

  • Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251(4995):788–791

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cybulsky MI et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan J, Watanabe T (2003) Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb 10(2):63–71

    Article  CAS  PubMed  Google Scholar 

  • Gao X et al (2015) Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis. Inflammation 38(3):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Herrington W et al (2016) Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 118(4):535–546

    Article  CAS  PubMed  Google Scholar 

  • Hu Y et al (2016) Icariin attenuates high-cholesterol diet induced atherosclerosis in rats by inhibition of inflammatory response and p38 MAPK signaling pathway. Inflammation 39(1):228–236

    Article  CAS  PubMed  Google Scholar 

  • Ji Y et al (2019) Bergenin ameliorates MPTP-induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J Alzheimers Dis 72(3):823–833

    Article  CAS  PubMed  Google Scholar 

  • Kattoor AJ et al (2017) Oxidative stress in atherosclerosis. Curr Atheroscler Rep 19(11):42

    Article  PubMed  Google Scholar 

  • Kim SR et al (2008) Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta 1783(5):886–895

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ et al (2010) 5’-nitro-indirubinoxime inhibits inflammatory response in TNF-alpha stimulated human umbilical vein endothelial cells. Atherosclerosis 211(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127(3):295–314

    Article  CAS  PubMed  Google Scholar 

  • Kumar R et al (2012) Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna Rottler. Fitoterapia 83(2):395–401

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Harrison DG (2001) Oxidant stress as a marker for cardiovascular events: Ox marks the spot. Circulation 104(22):2638–2640

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2019) Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE mice. Food Funct 10(7):4001–4009

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524–533

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lim HK et al (2000) Protective effects of bergenin, the major constituent of Mallotus japonicus, on D-galactosamine-intoxicated rat hepatocytes. J Ethnopharmacol 70(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Lin H et al (2022) Novel combined preparation and investigation of bergenin-loaded albumin nanoparticles for the treatment of acute lung injury: in vitro and in vivo evaluations. Inflammation 45(1):428–444

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Liu J et al (2021) Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev Res 82(2):278–286

    Article  ADS  CAS  PubMed  Google Scholar 

  • Marchio P et al (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid Med Cell Longev 2019:8563845

    Article  PubMed Central  PubMed  Google Scholar 

  • Qiao S et al (2019) Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway. Free Radic Biol Med 145:118–135

    Article  CAS  PubMed  Google Scholar 

  • Rao K et al (2018) Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J Mater Chem B 6(27):4486–4501

    Article  CAS  PubMed  Google Scholar 

  • Salimo ZM et al (2023) Chemistry and pharmacology of bergenin or its derivatives: a promising molecule. Biomolecules 13(3):403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shikov AN et al (2014) Bergenia crassifolia (L.) Fritsch—pharmacology and phytochemistry. Phytomedicine 21(12):1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Soehnlein O, Libby P (2021) Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 20(8):589–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh K et al (2019) Effect of bergenin on RANKL-induced osteoclast differentiation in the presence of methylglyoxal. Toxicol In Vitro 61:104613

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang K et al (2017) Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Front Pharmacol 8:981

    Article  PubMed  Google Scholar 

  • Wu Y et al (2018) Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomed Pharmacother 97:1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Yang S et al (2017) The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. J Ethnopharmacol 200:147–155

    Article  CAS  PubMed  Google Scholar 

  • Yin Y et al (2022) Bergenin alleviates diabetic retinopathy in STZ-induced rats. Appl Biochem Biotechnol 195(9):5299–5311

    Article  PubMed  Google Scholar 

  • Zhang G et al (2021) Bergenin alleviates H2O2-induced oxidative stress and apoptosis in nucleus pulposus cells: involvement of the PPAR-γ/NF-κB pathway. Environ Toxicol 36(12):2541–2550

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang X et al (2022) Bergenin has neuroprotective effects in mice with ischemic stroke through antioxidative stress and anti-inflammation via regulating Sirt1/FOXO3a/NF-κB signaling. NeuroReport 33(13):549–560

    Article  CAS  PubMed  Google Scholar 

  • Zhou P et al (2017) Attenuation of TNF-α-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front Pharmacol 8:464

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu Y et al (2018) Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 8(3):80

    Article  MathSciNet  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all participants who contributed to the study.

Author information

Authors and Affiliations

Authors

Contributions

Liyuan Liang was the main designer of this study. Liyuan Liang and Wei Yang performed the experiments and analyzed the data. Liyuan Liang and Wei Yang drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Yang.

Ethics declarations

Conflict of interest

Liyuan Liang and Wei Yang declared no competing interests in this study.

Patient’s consent

Not applicable.

Ethics approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Yang, W. Bergenin ameliorates the progression of atherosclerosis by inhibiting oxidative stress, inflammation, and monocytes adhesion in human umbilical vein endothelial cells. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00428-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00428-8

Keywords

Navigation