Skip to main content
Log in

OsCSN2 orchestrates Oryza sativa L. growth and development through modulation of the GA and BR pathways

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The COP9 signalosome (CSN) is a conserved protein complex found in higher eukaryotes, consisting of eight subunits, and it plays a crucial role in regulating various processes of plant growth and development. Among these subunits, CSN2 is one of the most conserved components within the COP9 signalosome complex. Despite its prior identification in other species, its specific function in Oryza sativa L. (Rice) has remained poorly understood. In this study, we investigated the role of CSN2 in rice using gene editing CRISPR/Cas9 technology and overexpression techniques. We created two types of mutants: the oscsn2 mutant and the OsCSN2-OE mutant, both in the background of rice, and also generated point mutants of OsCSN2 (OsCSN2K64E, OsCSN2K67E, OsCSN2K71E and OsCSN2K104E) to further explore the regulatory function of OsCSN2. Phenotypic observation and gene expression analysis were conducted on plants from the generated mutants, tracking their growth from the seedling to the heading stages. The results showed that the loss and modification of OsCSN2 had limited effects on plant growth and development during the early stages of both the wild-type and mutant plants. However, as the plants grew to 60 days, significant differences emerged. The OsCSN2 point mutants exhibited increased tillering compared to the OsCSN2-OE mutant plants, which were already at the tillering stage. On the other hand, the OsCSN2 point mutant had already progressed to the heading and flowering stages, with the shorter plants. These results, along with functional predictions of the OsCSN2 protein, indicated that changes in the 64th, 67th, 71st, and 104th amino acids of OsCSN2 affected its ubiquitination site, influencing the ubiquitination function of CSN and consequently impacting the degradation of the DELLA protein SLR1. Taken together, it can be speculated that OsCSN2 plays a key role in GA and BR pathways by influencing the functional regulation of the transcription factor SLR1 in CSN, thereby affecting the growth and development of rice and the number of tillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

Download references

Acknowledgements

We thank Researchers editorial team (www.home-for-researchers.com) for language editing service.

Funding

This study was funded by the Department of Jilin Province Science & Technology [grant numbers 20230402020GH, 20220402060GH, 20210203011SF].

Author information

Authors and Affiliations

Authors

Contributions

H.S.N., W.M., G.L.Q. conceived and designed the experiments. H.S.N., J.T.T., A.B. performed the experiments. H.S.N., Y.W.J., A.B., L.Y.X., W.M., S.K. analyzed and discussed the data, H.S.N., W.M., G.L.Q. wrote and revised the article. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Ming Wu or Liquan Guo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Yue, W., Bao, A. et al. OsCSN2 orchestrates Oryza sativa L. growth and development through modulation of the GA and BR pathways. Funct Integr Genomics 24, 39 (2024). https://doi.org/10.1007/s10142-024-01320-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01320-3

Keywords

Navigation