Skip to main content
Log in

Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Echaide, M., Autilio, C., Arroyo, R., and Perez-Gil, J., Restoring pulmonary surfactant membranes and films at the respiratory surface, Biochim. Biophys. Acta, 2017, vol. 1859, no. 9, pp. 1725–1739. https://doi.org/10.1016/J.BBAMEM.2017.03.015

    Article  CAS  Google Scholar 

  2. Zuo, Y., Veldhuizen, R., Neumann, A., Petersen, N., and Possmayer, F., Current perspectives in pulmonary surfactant—Inhibition, enhancement and evaluation, Biochim. Biophys. Acta, 2008, vol. 1778, no. 10, pp. 1947–1977. https://doi.org/10.1016/j.bbamem.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  3. Autilio, C. and Pérez-Gil, J., Understanding the principle biophysics concepts of pulmonary surfactant in health and disease, Arch. Dis. Child., Fetal and Neonatal Edition, 2018, vol. 104, no. 4, pp. F1–F9. https://doi.org/10.1136/archdischild-2018-315413

    Article  Google Scholar 

  4. Piknova, B., Schram, V., and Hall, S., Pulmonary surfactant: Phase behavior and function, Curr. Opin. Struct. Biol., 2002, vol. 12, no. 4, pp. 487–494. https://doi.org/10.1016/s0959-440x(02)00352-4

    Article  CAS  PubMed  Google Scholar 

  5. Castillo-Sánchez, J., Cruz, A., and Pérez-Gil, J., Structural hallmarks of lung surfactant: Lipid−protein interactions, membrane structure and future challenges, Arch. Biochem. Biophys., 2021, vol. 703, p. 108850. https://doi.org/10.1016/J.ABB.2021.108850

    Article  PubMed  Google Scholar 

  6. Lopez-Rodriguez, E. and Pérez-Gil, J., Structure function relationships in pulmonary surfactant membranes: From biophysics to therapy, Biochim. Biophys. Acta, 2014, vol. 1838, no. 6, pp. 1568–1585. https://doi.org/10.1016/j.bbamem.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  7. Goerke, J., Pulmonary surfactant: Functions and molecular composition, Biochim. Biophys. Acta, 1998, vol. 1408, nos. 2–3, pp. 79–89. https://doi.org/10.1016/S0925-4439(98)00060-X

    Article  CAS  PubMed  Google Scholar 

  8. Wustneck, R., Perez-Gil, J., Wustneck, N., Cruz, A., Fainerman, V., and Pison, U., Interfacial properties of pulmonary surfactant layers, Adv. Colloid Interface Sci., 2005, vol. 117, nos. 1–3, pp. 33–58. https://doi.org/10.1016/j.cis.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  9. Casals, C. and Cañadas, O., Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function, Biochim. Biophys. Acta, 2012, vol. 1818, no. 11, pp. 2550–2562. https://doi.org/10.1016/J.BBAMEM.2012.05.024

    Article  CAS  PubMed  Google Scholar 

  10. Keating, E., Zuo, Y., Tadayyon, S., Petersen, N., Possmayer, F., and Veldhuizen, R., A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant, Biochim. Biophys. Acta, 2012, vol. 1818, no. 5, pp. 1225–1234. https://doi.org/10.1016/j.bbamem.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  11. de la Serna, J., Vargas, R., Picardi, V., Cruz, A., Arranz, R., Valpuesta, M., Mateu, L., and Peres-Gil, J., Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface, Faraday Discuss., 2013, vol. 161, pp. 535–548. https://doi.org/10.1039/c2fd20096a

    Article  ADS  CAS  Google Scholar 

  12. López-Montero, I., Arriaga, L., Rivas, G., Vélez, M., and Monroy, F., Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers, Chem. Phys. Lipids, 2010, vol. 163, no. 1, pp. 56–63. https://doi.org/10.1016/J.CHEMPHYSLIP.2009.10.002

    Article  PubMed  Google Scholar 

  13. Sabatini, K., Mattila, J-P., and Kinnunen, P., Interfacial behavior of cholesterol, ergosterol and lanosterol in mixtures with DPPC and DMPC, Biophys. J., 2008, vol. 95, no. 5, pp. 2340–2355. https://doi.org/10.1529/biophysj.108.132076

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyoshi, T. and Kato, S., Detailed analysis of the surface area and elasticity in the saturated 1,2-diacylphosphatidylcholine/cholesterol binary monolayer system, Langmuir, 2015, vol. 31, no. 33, pp. 9086–9096. https://doi.org/10.1021/acs.langmuir.5b01775

    Article  CAS  PubMed  Google Scholar 

  15. Schurch, S., Bachofen, H., Goerke, J., and Possmayer, F., A captive bubble method reproduces the in situ behavior of lung surfactant monolayers, J. Appl. Physiol., 1989, vol. 67, no. 6, pp. 2389–2396. https://doi.org/10.1152/jappl.1989.67.6.2389

    Article  CAS  PubMed  Google Scholar 

  16. Bykov, A.G. and Noskov, B.A., Surface dilatational elasticity of pulmonary surfactant solutions in a wide range of surface tensions, Colloid J., 2018, vol. 80, no. 5, pp. 467–473. https://doi.org/10.1134/S1061933X18050034

    Article  CAS  Google Scholar 

  17. Gopal, A. and Lee, K.Y.C., Morphology and collapse transitions in binary phospholipid monolayers, J. Phys. Chem. B., 2001, vol. 105, no. 42, pp. 10348–10354. https://doi.org/10.1021/jp012532n

    Article  CAS  Google Scholar 

  18. Lee, K.Y.C., Collapse mechanisms of Langmuir monolayers, Annu. Rev. Phys. Chem., 2008, vol. 59, pp. 771–791. https://doi.org/10.1146/annurev.physchem.58.032806.104619

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhang, H., Fan, Q., Wang, Y., Neal, C., and Zuo, Y., Comparative study of clinical pulmonary surfactants using atomic force microscopy, Biochim. Biophys. Acta, 2011, vol. 1808, no. 7, pp. 1832–1842. https://doi.org/10.1016/J.BBAMEM.2011.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ravera, F., Miller, R., Zuo, Y., Noskov, A., Bykov, A., Kovalchuk, V., Loglio, G., Javadi, A., and Liggieri, L., Methods and models to investigate the physicochemical functionality of pulmonary surfactant, Curr. Opin. Colloid Interface Sci., 2021, vol. 55, p. 101467. https://doi.org/10.1016/j.cocis.2021.101467

    Article  CAS  Google Scholar 

  21. Santini, E., Nepita, I., Bykov, A., Ravera, F., Liggieri, L., Dowlati, S., Javadi, A., Miller, R., and Loglio, G., Interfacial dynamics of adsorption layers as supports for biomedical research and diagnostics, Colloids Interfaces, 2022, vol. 6, no. 4, p. 81. https://doi.org/10.3390/colloids6040081

    Article  CAS  Google Scholar 

  22. Bykov, A., Liggieri, L., Noskov, B., Pandolfini, P., Ravera, F., and Loglio, G., Surface dilational rheological properties in the nonlinear domain, Adv. Colloid Interface Sci., 2015, vol. 222, pp. 110–118. https://doi.org/10.1016/j.cis.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  23. Bykov, A., Loglio, G., Ravera, F., Liggieri, L., Miller, R., and Noskov, B., Dilational surface elasticity of spread monolayers of pulmonary lipids in a broad range of surface pressure, Colloids Surf., A, 2018, vol. 541, pp. 137–44. https://doi.org/10.1016/j.colsurfa.2018.01.031

    Article  CAS  Google Scholar 

  24. Bykov, A., Loglio, G., Miller, R., Milyaeva, O., Michailov, A., and Noskov, B., Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions, Colloids Surf., A, 2019, vol. 573, pp. 14–21. https://doi.org/10.1016/j.colsurfa.2019.04.032

    Article  CAS  Google Scholar 

  25. Bykov, A., Milyaeva, O., Isakov, N., Michailov, A., Loglio, G., Miller, R., and Noskov, B., Dynamic properties of adsorption layers of pulmonary surfactants. Influence of matter exchange with bulk phase, Colloids Surf., A, 2021, vol. 611, p. 125851. https://doi.org/10.1016/j.colsurfa.2020.125851

    Article  CAS  Google Scholar 

  26. Bykov, A.G. and Panaeva, M.A., Dynamic properties of monolayers of pulmonary lipids on the surface of sodium polystyrene sulfonate and polydiallyldimethylammonium chloride solutions, Colloid J., 2023, vol. 85, no. 5, pp. 678–686. https://doi.org/10.1134/S1061933X23600677

    Article  CAS  Google Scholar 

  27. Bykov, A., Loglio, G., Miller, R., Milyaeva, O., Michailov, A., and Noskov, B., Dynamic properties and relaxation processes in surface layer pulmonary surfactant solutions, Chem. Phys. Lipids, 2019, vol. 225, p. 104812. https://doi.org/10.1016/j.chemphyslip.2019.104812

    Article  CAS  PubMed  Google Scholar 

  28. Zuo, Y., Keating, E., Zhao, L., Tadayyon, S., Veldhuizen, R., Petersen, N., and Possmayer, F., Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro- and nanostructures of functional pulmonary surfactant films and the effect of SP-A, Biophys. J., 2008, vol. 94, pp. 3549–3564. https://doi.org/10.1529/biophysj.107.122648

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed in commemoration of the 300th anniversary of the foundation of the St. Petersburg State University. The authors are grateful to the resource centers of the St. Petersburg State University (Center for Optical and Laser Research and Center for Methods of Analysis of Substance Composition) for the opportunity to use their equipment.

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-00235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bykov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.G., Panaeva, M.A., Rafikova, A.R. et al. Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids. Colloid J 86, 14–22 (2024). https://doi.org/10.1134/S1061933X23601142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23601142

Keywords:

Navigation