Skip to main content
Log in

New Polyfunctional Biamphiphilic Surfactants Based on Alkylmethylmorpholinium Cation and Dodecyl Sulfate Anion

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

New biamphiphilic surfactants (BSs) have been synthesized based on alkylmethylmorpholinium cation and dodecyl sulfate anion (Mor-n(DS), n = 4, 6, 8, 10). The structure of the biamphiphiles has been characterized by IR spectroscopy, 1H NMR spectroscopy, mass spectrometry, and elemental analysis. The aggregation behavior of the biamphiphiles in aqueous solutions has been assessed by tensiometry, conductometry, fluorescence spectroscopy (using a pyrene probe) and dynamic and electrophoretic light scattering. It has been shown that an increase in the hydrophobic tail length by two carbon atoms in an amphiphilic cation leads to an increase in the surface activity of the surfactant by ~5 units and a decrease in the aggregation threshold of the systems by 1.5–2 times. It has been established that the formation of aggregates with hydrodynamic diameters of 20–120 nm depending on the alkyl chain length of the alkylmethylmorpholinium cation and BS concentration. The zeta potential of the systems ranges from –25 to –100 mV and decreases with increasing biamphiphile concentration. Spectrophotometry has been employed to show a significant solubilization capacity of the biamphiphiles with respect to a hydrophobic dye Orange OT. The compounds obtained may be of interest for biomedical applications and other high-tech areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kotenko, A.A. and Khil’ko, S.L., The surface properties of solutions of dicationic imidazolium surfactants with short bridge fragments, Colloid J., 2021, vol. 83, no. 2, pp. 211–218. https://doi.org/10.1134/S1061933X21020058

    Article  CAS  Google Scholar 

  2. Dement’eva, O.V., Mesoporous silica container particles: New approaches and new opportunities, Colloid J., 2020, vol. 82, no. 5, pp. 479–501. https://doi.org/10.1134/S1061933X20050038

    Article  Google Scholar 

  3. Massarweh, O. and Abushaikha, Ah. S., The use of surfactants in enhanced oil recovery: A review of recent advances, Energy Reports, 2020, vol. 6, pp. 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009

    Article  Google Scholar 

  4. Johnson, P., Trybala, A., Starov, V., and Pinfield, V. J., Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants, Adv. Colloid Interface Sci., 2021, vol. 288, p. 102340. https://doi.org/10.1016/j.cis.2020.102340

    Article  CAS  PubMed  Google Scholar 

  5. Kuznetsova, D.A., Kuznetsov, D.M., Vasileva, L.A., Amerhanova, S.K., Valeeva, D.N., Salakhieva, D.V., Nikolaeva, V.A., Nizameev, I.R., Islamov, D.R., Usachev, K.S., Voloshina, A.D., and Zakharova, L.Ya., Complexation of oligo- and polynucleotides with methoxyphenyl-functionalized imidazolium surfactants, Pharmaceutics, 2022, vol. 14, no. 12, p. 2685. https://doi.org/10.3390/pharmaceutics14122685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dement’eva, O.V., Naumova, K.A., Shishmakova, E.M., Senchikhin, I.N., Zhigletsova, S.K., Klykova, M.V., Dunaitsev, I.A., Kozlov, D.A., Rudoy, V.M., Synthesis of bifunctional silica container particles on antiseptic micelles with solubilized curcumin and assessment of their biological activity, Colloid J., 2021, vol. 83, no. 6, pp. 651–661. https://doi.org/10.1134/S1061933X21060028

    Article  Google Scholar 

  7. Zhil’tsova, E.P., Islamov, D.R. and Zakharova, L.Y., Estimation of the shape factor of aggregates in self-associating systems based on metallosurfactants, Colloid J, 2023, vol. 85, no. 3, pp. 358–365. https://doi.org/10.1134/S1061933X23600252

    Article  Google Scholar 

  8. Kashapov, R.R., Mirgorodskaya, A.B., Kuznetsov, D.M., Razuvaeva, Yu.S., and Zakharova, L.Ya., Nanosized supramolecular systems: From colloidal surfactants to amphiphilic macrocycles and superamphiphiles, Colloid J., 2022, vol. 84, no. 5, pp. 502–517. https://doi.org/10.1134/S1061933X22700016

    Article  CAS  Google Scholar 

  9. Pavlov, R.V., Gaynanova, G.A., Kuznetsova, D.A., Vasileva, L.A., Zueva, I.V., Sapunova, A.S., Buzyurova, D.N., Babaev, V.M., Voloshina, A.D., Lukashenko, S.S., Rizvanov, I.Kh., Petrov, K.A., Zakharova, L.Ya., and Sinyashin, O.G., Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake, Int. J. Pharm., 2020, vol. 587, p. 119640. https://doi.org/10.1016/j.ijpharm.2020.119640

    Article  CAS  PubMed  Google Scholar 

  10. Chowdhury, S., Rakshit, At., Acharjee, An., and Saha, B., Biodegradability and biocompatibility: Advancements in synthetic surfactants, J. Mol. Liq., 2021, vol. 324, p. 115105. https://doi.org/10.1016/j.molliq.2020.115105

    Article  CAS  Google Scholar 

  11. Ghosh, S., Ray, A., Pramanik, N., and Ambade, B., Can a catanionic surfactant mixture act as a drug delivery vehicle?, C. R. Chim., 2016, vol. 19, no. 8, pp. 951–954. https://doi.org/10.1016/j.crci.2016.03.020

    Article  CAS  Google Scholar 

  12. Ghosh, S., Ray, A., and Pramanik, N., Self-assembly of surfactants: An overview on general aspects of amphiphiles, Biophys. Chem., 2020, vol. 265, p. 106429. https://doi.org/10.1016/j.bpc.2020.106429

    Article  CAS  PubMed  Google Scholar 

  13. El Seoud, O.A., Keppeler, N., Malek, N.I., and Galgano, P.D., Ionic liquid-based surfactants: Recent advances in their syntheses, solution properties, and applications, Polymers, 2021, vol. 13, no. 7, p. 1100. https://doi.org/10.3390/polym13071100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wasserscheid, P., van Hal, R., and Bösmann, A., 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid, Green Chem., 2002, vol. 4, no. 4, pp. 400–404. https://doi.org/10.1039/B205425F

    Article  CAS  Google Scholar 

  15. Rao, K.S., Trivedi, T.J., and Kumar, A., Aqueous-biamphiphilic ionic liquid systems: Self-assembly and synthesis of gold nanocrystals/microplates, J. Phys. Chem. B, 2012, vol. 116, no. 49, pp. 14363–14374. https://doi.org/10.1021/jp309717n

    Article  CAS  PubMed  Google Scholar 

  16. Bharmoria, P., Mehta, M.J., Pancha, I., and Kumar, A., Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution, J. Phys. Chem. B, 2014, vol. 118, no. 33, pp. 9890–9899. https://doi.org/10.1021/jp506211b

    Article  CAS  PubMed  Google Scholar 

  17. Pal, A., Punia, R., and Dubey, G.P., Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study, J. Mol. Liq., 2021, vol. 337, p. 116355. https://doi.org/10.1016/j.molliq.2021.116355

    Article  CAS  Google Scholar 

  18. Pal, A. and Punia, R., Self-aggregation behaviour of cationic surfactant tetradecyltrimethylammonium bromide and bi-amphiphilic surface active ionic liquid 3‑methyl-1-pentylimidazolium dodecylsulfate in aqueous solution, J. Mol. Liq., 2020, vol. 304, p. 112803. https://doi.org/10.1016/j.molliq.2020.112803

    Article  CAS  Google Scholar 

  19. Shi, J. and Shen, X., Construction of supramolecular self-assemblies based on the biamphiphilic ionic liquid−β-cyclodextrin system, J. Phys. Chem. B, 2014, vol. 118, no. 6, pp. 1685–1695. https://doi.org/10.1021/jp4113188

    Article  CAS  PubMed  Google Scholar 

  20. Singh, G., Singh, G., and Kang, T.S., Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media, J. Phys. Chem. B, 2016, vol. 120, no. 6, pp. 1092–1105. https://doi.org/10.1021/acs.jpcb.5b09688

    Article  CAS  PubMed  Google Scholar 

  21. Singh, G., Komal, Singh, M., Singh, O., and Kang, T.S., Hydrophobically driven morphologically diverse self-assembled architectures of deoxycholate and imidazolium-based biamphiphilic ionic liquids in aqueous medium, J. Phys. Chem. B, 2018, vol. 122, no. 50, pp. 12227–12239. https://doi.org/10.1021/acs.jpcb.8b10161

    Article  CAS  PubMed  Google Scholar 

  22. Kaur, M., Kaur, H., Singh, M., Singh, G., and Kang, T.S., Biamphiphilic ionic liquid based aqueous microemulsions as an efficient catalytic medium for cytochrome c, Phys. Chem. Chem. Phys., 2021, vol. 23, no. 1, pp. 320–328. https://doi.org/10.1039/D0CP04513F

    Article  CAS  PubMed  Google Scholar 

  23. Pavlov, R., Valeeva, F., Gaynanova, G., Kuznetsov, D., and Zakharova, L., Aggregation of morpholinium surfactants with amino alcohols as additives: A close look, Surf. Innovations, 2023, vol. 11, nos. 1–3, pp. 169–177. https://doi.org/10.1680/jsuin.22.00006

    Article  Google Scholar 

  24. Hong, J.Y., Kim, J-K., Song, Y.K., Park, J.S., and Kim, C.K., A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption, Journal of Controlled Release, 2006, vol. 110, no. 2, pp. 332–338. https://doi.org/10.1016/j.jconrel.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  25. Mirgorodskaya, A.B., Lukashenko, S.S., Yatskevich, E.I., Kulik, N.V., Voloshina, A.D., Zobov, V.V., Zakharova, L.Y., Konovalov, A.I., Kudryavtsev, D.B., and Panteleeva, A.R., Aggregation behavior, anticorrosion effect, and antimicrobial activity of alkylmethylmorpholinium bromides, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, pp. 538–542. https://doi.org/10.1134/S207020511404011X

    Article  CAS  Google Scholar 

  26. Chiappe, C., Pomelli, C.S., and Rajamani, S., Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids, J. Phys. Chem. B, 2011, vol. 115, no. 31, pp. 9653–9661. https://doi.org/10.1021/jp2045788

    Article  CAS  PubMed  Google Scholar 

  27. Obliosca, J.M., Arco, S.D., and Huang, M.H., Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids, J. Fluoresc., 2007, vol. 17, pp. 613–618. https://doi.org/10.1007/s10895-007-0236-7

    Article  CAS  PubMed  Google Scholar 

  28. Kuznetsova, D.A., Kuznetsov, D.M., Vasileva, L.A., Toropchina, A.V., Belova, D.K., Amerhanova, S.K., Lyubina, A.P., Voloshina, A.D., and Zakharova, L.Ya., Pyrrolidinium surfactants with a biodegradable carbamate fragment: Self-assembling and biomedical application, J. Mol. Liq., 2021, vol. 340, p. 117229. https://doi.org/10.1016/j.molliq.2021.117229

    Article  CAS  Google Scholar 

  29. Kuznetsova, D.A., Kuznetsov, D.M., Amerhanova, S.K., Buzmakova, E.V., Lyubina, A.P., Syakaev, V.V., Nizameev, I.R., Kadirov, M.K., Voloshina, A.D., and Zakharova, L.Ya., Cationic imidazolium amphiphiles bearing a methoxyphenyl fragment: Synthesis, self-assembly behavior, and antimicrobial activity, Langmuir, 2022, vol. 38, no. 16, pp. 4921–4934. https://doi.org/10.1021/acs.langmuir.2c00299

    Article  CAS  PubMed  Google Scholar 

  30. Kuznetsov, D.M., Kuznetsova, D.A., Gabdrakhmanov, D.R., Lukashenko, S.S., Nikitin, Y.N., and Zakharova, L.Ya., Triallyl ammonium amphiphiles: Self-assembly and complexation with bovine serum albumin, Surf. Innovations, 2022, vol. 10, nos. 4–5, pp. 298–311. https://doi.org/10.1680/jsuin.21.00044

    Article  Google Scholar 

  31. Kuznetsov, D.M., Kuznetsova, D.A., and Zakharova, L.Ya., Liposomes modified with borneol-containing surfactants for transdermal delivery of hydrophilic substrates, Russ. Chem. Bull., 2022, vol. 71, no. 9, pp. 1887–1896. https://doi.org/10.1007/s11172-022-3606-z

    Article  CAS  Google Scholar 

  32. Samarkina, D.A., Gabdrakhmanov, D.R., Lukashenko, S.S., Khamatgalimov, A.R., Kovalenko, V.I., and Zakharova, L.Y., Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies, Colloids Surf., A, 2017, vol. 529, pp. 990–997. https://doi.org/10.1016/j.colsurfa.2017.07.018

    Article  CAS  Google Scholar 

  33. Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G., and Blasi, P., Surfactant self-assembling and critical micelle concentration: One approach fits all?, Langmuir, 2020, vol. 36, no. 21, pp. 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vasileva, L.A., Kuznetsova, D.A., Valeeva, F.G., Vasileva, E.A., Lukashenko, S.S., Gaynanova, G.A., and Zakharova, L.Ya., Micellar nanocontainers based on cationic surfactants with a pyrrolidinium head group for increasing drug bioavailability, Russ. Chem. Bull., 2021, vol. 70, pp. 1341–1348. https://doi.org/10.1007/s11172-021-3221-4

    Article  CAS  Google Scholar 

  35. Perinelli, D.R., Cespi, M., Casettari, L., Vllasaliu, D., Cangiotti, M., Ottaviani, M.F., Giorgioni, G., Bonacucina, G., and Palmieri, G.F., Correlation among chemical structure, surface properties and cytotoxicity of N-acyl alanine and serine surfactants, Eur. J. Pharm. Biopharm., 2016, vol. 109, pp. 93–102. https://doi.org/10.1016/j.ejpb.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  36. Shaban, S.M., Kang, J., and Kim, D.–H., Surfactants: Recent advances and their applications, Composites Communications, 2020, vol. 22, p. 100537. https://doi.org/10.1016/j.coco.2020.100537

    Article  Google Scholar 

  37. Kolesnikova, E.N. and Glukhareva, N.A., Micellization in solutions of anionic surfactants with two ionogenic groups, Colloid J., 2008, vol. 70, no. 2, pp. 184–188. https://doi.org/10.1134/s1061933x08020105

    Article  CAS  Google Scholar 

  38. Mabrouk, M.M., Hamed, N.A., and Mansour, F.R., Spectroscopic methods for determination of critical micelle concentrations of surfactants; A comprehensive review, Appl. Spectrosc. Rev., 2023, vol. 58, no. 3, pp. 206–234. https://doi.org/10.1080/05704928.2021.1955702

    Article  ADS  CAS  Google Scholar 

  39. Chatterjee, A., Moulik, S.P., Sanyal, S.K., Mishra, B.K., and Puri, P.M., Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements, J. Phys. Chem. B, 2001, vol. 105, no. 51, pp. 12823–12831. https://doi.org/10.1021/jp0123029

    Article  CAS  Google Scholar 

  40. Piñeiro, L., Novo, M., and Al–Soufi, W., Fluorescence emission of pyrene in surfactant solutions, Adv. Colloid Interface Sci., 2015, vol. 215, pp. 1–12. https://doi.org/10.1016/j.cis.2014.10.010

    Article  PubMed  Google Scholar 

  41. Aguiar, J., Carpena, P., Molina–Bolívar, J.A., and Carnero Ruiz, C., On the determination of the critical micelle concentration by the pyrene 1 : 3 ratio method, J. Colloid Interface Sci., 2003, vol. 258, no. 1, pp. 116–122. https://doi.org/10.1016/S0021-9797(02)00082-6

    Article  ADS  CAS  Google Scholar 

  42. Pisárčik, M., Devínsky, F., and Pupák, M., Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching, Open Chem., 2015, vol. 13, no. 1, pp. 922–931. https://doi.org/10.1515/chem-2015-0103

    Article  Google Scholar 

  43. Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc., Faraday Trans. 2, 1976, vol. 72, pp. 1525–1568. https://doi.org/10.1039/F29767201525

    Article  CAS  Google Scholar 

  44. Vashishat, R., Sanan, R., Ray, D., Aswal, V.K., and Mahajan, R.K., Biamphiphilic ionic liquids-drug mixtures: Interactional and morphological aspects, ChemistrySelect, 2018, vol. 3, no. 25, pp. 7089–7099. https://doi.org/10.1002/slct.201801296

    Article  CAS  Google Scholar 

  45. Zakharova, L.Ya., Vasilieva, E.A., Mirgorodskaya, A.B., Zakharov, S.V., Pavlov, R.V., Kashapova, N.E., and Gaynanova, G.A., Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions, J. Mol. Liq., 2023, vol. 370, p. 120923. https://doi.org/10.1016/j.molliq.2022.120923

    Article  CAS  Google Scholar 

  46. Saha, U., De, R., and Das, B., Interactions between loaded drugs and surfactant molecules in micellar drug delivery systems: A critical review, J. Mol. Liq., 2023, vol. 382, p. 121906. https://doi.org/10.1016/j.molliq.2023.121906

    Article  CAS  Google Scholar 

  47. Tehrani-Bagha, A. and Holmberg, K., Solubilization of hydrophobic dyes in surfactant solutions, Materials, 2013, vol. 6, no. 2, pp. 580–608. https://doi.org/10.3390/ma6020580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vasilieva, E.A., Kuznetsova, D.A., Valeeva, F.G., Kuznetsov, D.M., and Zakharova, L.Ya., Role of polyanions and surfactant head group in the formation of polymer–colloid nanocontainers, Nanomaterials, 2023, vol. 13, no. 6, p. 1072. https://doi.org/10.3390/nano13061072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gabdrakhmanov, D.R., Samarkina, D.A., Krylova, E.S., Kapitanov, I.V., Karpichev, Y., Latypov, Sh.K., Semenov, V.E., Nizameev, I.R., Kadirov, M.K., and Zakharova, L.Ya., Supramolecular systems based on novel amphiphiles and a polymer: aggregation and selective solubilization, J. Surfactants Deterg., 2019, vol. 22, no. 4, pp. 865–874. https://doi.org/10.1002/jsde.12257

    Article  CAS  Google Scholar 

  50. Tehrani–Bagha, A. and Holmberg, K., Solubilization of hydrophobic dyes in surfactant solutions, Materials, 2013, vol. 6, no. 2, pp. 580–608. https://doi.org/10.3390/ma6020580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mirgorodskaya, A.B., Yackevich, E.I., Gabdrakhmanov, D.R., Lukashenko, S.S., Zuev, Yu.F., and Zakharova, L.Ya., Self-organization and lipoplex formation of cationic surfactants with morpholinium head group, J. Mol. Liq., 2016, vol. 220, pp. 992–998. https://doi.org/10.1016/j.molliq.2016.05.010

    Article  CAS  Google Scholar 

  52. Mata, J., Varade, D., Ghosh, G., and Bahadur, P., Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate, Colloids Surf., A, 2004, vol. 245, nos. 1–3, pp. 69–73. https://doi.org/10.1016/j.colsurfa.2004.07.009

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 23-73-01035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Kuznetsov.

Ethics declarations

The authors of this work declare that they have no conflicts of int-erest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

4-Butyl-4-methylmorpholinium dodecyl sulfate. Yield, 1.3 g (80.6%); M.p., 62–65°C. IR spectrum (KBr), (ν, cm–1): 3460, 2959, 2920, 2852, 1648, 1469, 1381, 1223, 1131, 1113, 1075, 1019, 992, 912, 896, 827, 724, 631, 586. 1H NMR spectrum (400 MHz, CDCl3, δ ppm, J Hz): 0.87 t (OSO\(_{3}^{ - }\)–(CH2)11CH3, 3H, 3JHH 6.8); 1.00 t (N+–(CH2)3CH3, 3H, 3JHH 7.3); 1.24–1.34 m (N+–(CH2)2CH2–CH3, OSO\(_{3}^{ - }\)–(CH2)3(CH2)8– CH3, 18H); 1.42–1.48 m (OSO\(_{3}^{ - }\)–(CH2)2CH2–(CH2)8–CH3, 2H); 1.60–1.67 m (OSO\(_{3}^{ - }\)–CH2-CH2–(CH2)9–CH3, 2H); 1.76 m (N+–CH2CH2–CH2–CH3, 2H); 3.38 s (N+–CH3, 3H); 3.51 m (N+CH2–(CH2)2–CH3, 2H); 3.59 – 3.69 two m (N+CH2–CH2–O–, 4H); 3.96 – 4.09 two m (OSO\(_{3}^{ - }\)CH2–(CH2)10–CH3, N+–CH2CH2–O–, 6H). Found, %: C, 59.47; H, 10.74; N, 3.22; S, 7.48. Calculated for C21H45NO5S%: C, 59.54; H, 10.71; N, 3.31; S, 7.57. ESI mass spectrum, m/z: [M–C12H25OSO3]+ 158.05; [C12H25OSO3] 265.14 (calc. m/z for C21H45NO5S 423.30).

4-Hexyl-4-methylmorpholinium dodecyl sulfate. Yield 1.1 g (71.4%). M.p. 87−92°C. IR spectrum (KBr), ν, cm–1: 3456, 2957, 2923, 2854, 1638, 1468, 1379, 1248, 1222, 1132, 1117, 1062, 999, 919, 900, 790, 724, 623, 580. NMR spectrum 1H (600 MHz, D2O, δ ppm, J Hz): 0.95 t (OSO\(_{3}^{ - }\)–(CH2)11CH3, 3H, 3JHH 6.9); 1.00 t (N+–(CH2)5CH3, 3H, 3JHH 6.9); 1.37–1.46 m (N+–(CH2)2–(CH2)3–CH3, OSO\(_{3}^{ - }\)–(CH2)2–(CH2)9–CH3, 24H); 1.74 m (OSO\(_{3}^{ - }\)–CH2CH2–(CH2)9–CH3, 2H); 1.89 m (N+–CH2CH2–(CH2)3–CH3, 2H); 3.28 s (N+–CH3, 3H); 3.53–3.63 m (N+CH2–CH2–O–, N+CH2–(CH2)4–CH3, 6H); 4.05 m (OSO\(_{3}^{ - }\)CH2–(CH2)10–CH3, 2H); 4.12 m (N+–CH2CH2–O–, 4H). Found, %: C, 61.08; H, 10.99; N, 3.10; S, 7.01. Calculated for C23H49NO5S%: C, 61.16; H, 10.93; N, 3.11; S, 7.10. ESI mass spectrum, m/z: [MC12H25OSO3]+ 186.15; [C12H25OSO3] 265.12 (calc. m/z for C23H49NO5S 451.33).

4-Methyl-4-octylmorpholinium dodecyl sulfate. Yield 1.1 g (74.3%). M.p. 100–102°C. IR spectrum (KBr), ν, cm–1: 3447, 2957, 2924, 2853, 1637, 1468, 1439, 1379, 1251, 1226, 1120, 1096, 1061, 1016, 995, 913, 900, 857, 784, 723, 644, 62 2, 581, 536. NMR spectrum 1H (600 MHz, CDCl3, δ ppm, J Hz): 0.87 t (OSO\(_{3}^{ - }\)–(CH2)11CH3, 3H, 3JHH 7.1); 0.88 t (N+–(CH2)7CH3, 3H, 3JHH 7.1); 1.24–1.39 two m (N+–(CH2)2–(CH2)5–CH3, OSO\(_{3}^{ - }\)–(CH2)2–(CH2)9–CH3, 28Н); 1.64 m (OSO\(_{3}^{ - }\)–CH2CH2–(CH2)9–CH3, 2H); 1.76 m (N+–CH2CH2–(CH2)5–CH3, 2H); 3.38 s (N+–CH3, 3H); 3.48 m (N+CH2–(CH2)6–CH3, 2H); 3.54–3.57, 3.66–3.68 two m (N+CH2–CH2–O–, 4H); 3.95–3.99 m (N+–CH2CH2–O–, 4H); 4.04–4.08 m (OSO\(_{3}^{ - }\)CH2–(CH2)10–CH3, 2H). Found, %: C, 62.66; H, 11.15; N, 2.84; S, 6.60. Calculated for C25H53NO5S: C, 62.59; H, 11.13; N, 2.92; S, 6.68. ESI mass spectrum, m/z: [MC12H25OSO3]+ 214.03; [C12H25OSO3] 265.14 (calc. m/z for C25H53NO5S 479.36).

4-Decyl-4-methylmorpholinium dodecyl sulfate. Yield 1.1 g (78%). M.p. 98–100°C. IR spectrum (KBr), ν, cm–1: 3489, 2957, 2922, 2853, 1640, 1469, 1381, 1248, 1227, 1120, 1061, 1015, 992, 904, 855, 786, 723, 623, 581. NMR spectrum 1H (400 MHz, CDCl3, δ ppm, J Hz): 0.86–0.89 t (OSO\(_{3}^{ - }\)–(CH2)11CH3, N+–(CH2)9CH3, 6H); 1.25–1.37 two m (N+–(CH2)2–(CH2)7–CH3, OSO3¯–(CH2)2–(CH2)9–CH3, 32Н); 1.65 m (OSO\(_{3}^{ - }\)–CH2CH2–(CH2)9–CH3, 2H); 1.77 m (N+–CH2CH2–(CH2)7–CH3, 2H); 3.38 s (N+–CH3, 3H); 3.48 m (N+CH2–(CH2)8–CH3, 2H); 3.54–3.58, 3.65–3.69 two m (N+CH2–CH2–O–, 4H); 3.95–4.01 m (N+–CH2CH2–O–, 4H); 4.04–4.10 m (OSO\(_{3}^{ - }\)CH2–(CH2)10–CH3, 2H). Found, %: C, 63.79; H, 11.28; N, 2.82; S, 6.24. Calculated for C27H57NO5S%: C, 63.86; H, 11.31; N, 2.76; S, 6.31. ESI mass spectrum, m/z: [MC12H25OSO3]+ 242.07; [C12H25OSO3] 265.15 (calc. m/z for C27H57NO5S 507.40).

Fig. A1.
figure 7

1H NMR spectrum of Mor-4(DS).

Fig. A2.
figure 8

ESI mass spectrum of Mor-4(DS) (registration of positive ions).

Fig. A3.
figure 9

ESI mass spectrum of Mor-4(DS) (registration of negative ions).

Fig. A4.
figure 10

IR spectrum of Mor-4(DS).

Fig. A5.
figure 11

1H NMR spectrum of Mor-6(DS).

Fig. A6.
figure 12

ESI mass spectrum of Mor-6(DS) (registration of positive ions).

Fig. A7.
figure 13

ESI mass spectrum of Mor-6(DS) (registration of negative ions).

Fig. A8.
figure 14

IR spectrum of Mor-6(DS).

Fig. A9.
figure 15

1H NMR spectrum of Mor-8(DS).

Fig. A10.
figure 16

ESI mass spectrum of Mor-8(DS) (registration of positive ions).

Fig. A11.
figure 17

ESI mass spectrum of Mor-8(DS) (registration of negative ions).

Fig. A12.
figure 18

IR spectrum of Mor-8(DS).

Fig. A13.
figure 19

NMR 1H spectrum of Mor-10(DS).

Fig. A14.
figure 20

ESI mass spectrum of Mor-10(DS) (registration of positive ions).

Fig. A15.
figure 21

ESI mass spectrum of Mor-10(DS) (registration of negative ions).

Fig. A16.
figure 22

IR spectrum of Mor-10(DS).

Fig. A17.
figure 23

Dependence of specific electrical conductivity on concentration of biamphiphiles for (a) Mor-4(DS) and Mor-6(DS) systems and (b) Mor-8(DS) and Mor-10(DS) systems: (squares) Mor-4(DS), (rhombs) Mor-6(DS), (circles) Mor-8(DS), and (triangles) Mor-10(DS); 25°C.

Fig. A18.
figure 24

Fluorescence spectra of pyrene measured in the presence of different amounts of quencher (CPB) for (a) 3, (b) 5, and (c) 7 mM Mor-4(DS); the arrow shows the direction of increasing quencher concentration.

Fig. A19.
figure 25

Fluorescence spectra of pyrene measured in the presence of different amounts of quencher (CPB) for (a) 3, (b) 5, and (c) 7 mM Mor-6(DS); the arrow shows the direction of increasing quencher concentration.

Fig. A20.
figure 26

Fluorescence spectra of pyrene measured in the presence of different amounts of quencher (CPB) for (a) 1, (b) 3, and (c) 5 mM Mor-8(DS); the arrow shows the direction of increasing quencher concentration.

Fig. A21.
figure 27

Fluorescence spectra of pyrene measured in the presence of different amounts of quencher (CPB) for (a) 0.5, (b) 0.8, and (c) 1 mM Mor-10(DS); the arrow shows the direction of increasing quencher concentration.

Fig. A22.
figure 28

Absorption spectra of OOT measured for Mor-n(DS)/OOT binary systems at different surfactant concentrations: (a) Mor-4(DS), (b) Mor-6(DS), (c) Mor-8(DS), and (d) Mor-10(DS); the arrow shows the direction of increasing surfactant concentration; 25°C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, D.M., Kuznetsova, D.A., Valeeva, F.G. et al. New Polyfunctional Biamphiphilic Surfactants Based on Alkylmethylmorpholinium Cation and Dodecyl Sulfate Anion. Colloid J 86, 64–85 (2024). https://doi.org/10.1134/S1061933X23601051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23601051

Keywords:

Navigation