Skip to main content
Log in

On certain GL(6) form and its Rankin-Selberg convolution

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider LG(s) to be the L-function attached to a particular automorphic form G on GL(6). We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg L-function LG×G(s). As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of LG×G(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Bourgain: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205–224.

    Article  MathSciNet  Google Scholar 

  2. S. Gelbart, H. Jacquet: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471–542.

    Article  MathSciNet  Google Scholar 

  3. D. Goldfeld: Automorphic Forms and L-Functions for the Group GL(n, ℝ). Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  4. D. R. Heath-Brown: The twelfth power moment of the Riemann-function. Q. J. Math. 29 (1978), 443–462.

    Article  MathSciNet  Google Scholar 

  5. H. H. Kim: Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Am. Math. Soc. 16 (2003), 139–183.

    Article  Google Scholar 

  6. H. H. Kim, F. Shahidi: Functorial products for GL2 × GL3 and the symmetric cube for GL2. Ann. Math. (2) 155 (2002), 837–893.

    Article  MathSciNet  Google Scholar 

  7. R. P. Langlands: Problems in the theory of automorphic forms. Lectures in Modern Analysis and Applications III. Lecture Notes in Mathematics 170. Springer, Berlin, 1970, pp. 18–61.

    Google Scholar 

  8. Y.-K. Lau, G. Lü: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687–716.

    Article  MathSciNet  Google Scholar 

  9. Y. Lin, R. Nunes, Z. Qi: Strong subconvexity for self-dual GL(3) L-functions. Int. Math. Res. Not. 153 (2022), 11453–11470.

    Google Scholar 

  10. T. Meurman: On the order of the Maass L-function on the critical line. Number Theory. Volume 1. Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam, 1990, pp. 325–354.

    Google Scholar 

  11. P. D. Nelson: Bounds for standard L-functions. Available at https://arxiv.org/abs/2109.15230 (2021), 237 pages.

  12. A. Perelli: General L-functions. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287–306.

    Article  MathSciNet  Google Scholar 

  13. R. A. Rankin: Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions I. Proc. Camb. Philos. Soc. 35 (1939), 351–356.

    Article  ADS  Google Scholar 

  14. A. Selberg: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47–50. (In German.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrinder Kaur.

Additional information

The first author is supported by University Grants Commission’s NET Senior Research Fellowship (Ref. No. 1004/(CSIRUGC NET Dec. 2017)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Sankaranarayanan, A. On certain GL(6) form and its Rankin-Selberg convolution. Czech Math J (2024). https://doi.org/10.21136/CMJ.2024.0355-23

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.21136/CMJ.2024.0355-23

Keywords

MSC 2020

Navigation