Skip to main content
Log in

Oxygen Isotope Composition of the Silicate Minerals and Chrome Ores in the Guleman Ophiolite in Southeastern Türkiye

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Oxygen crystallising was obtained from olivine, chromite separates from host rock samples, and gabbro from ultramafic cumulates, harzburgite, and dunite samples collected from tectonites of the Guleman ophiolites. The study includes the oxygen isotope compositions from the Guleman ophiolite and the evolutionary scenarios of geochemical and isotopic signatures. The olivine and chromitite δ18Oolivine/chromite and δ18Omelt values point out these minerals and melt isotopic compositions similar to mantle values and rich, heavy stable isotopes. The highest δ18Ochromite isotopic composition values indicate that as the heavy isotope in the melt increases, the concentration in the mineral increases. Excluding a dunite sample, the values of the δ18Owhole rock of the dunite and pyroxenite samples are similar to mantle values. The gabbro samples have higher δ18Owhole rock values than the two harzburgites. Hereby, the chromite formations are the later fractional crystallisation products than olivine and dunites due to the lowering of δ18O. The lower oxygen isotopic composition in studied samples than the normal mantle values, and these values point out subducted hydrothermally alteration. The higher δ18O isotopic compositions could be explained by serpentinization on the ocean floor at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Aktaş and H. F. Robertson, in The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dixon and A. H. F. Robertson, Spec. Publ.—Geol. Soc. London (Blackwell Sci. Publ., Oxford, London, 1984), vol. 17, pp. 375–401.

  2. I. Bindeman, A. Gurenko, O. Sigmarsson, and M. Chaussidon, Geochim. Cosmochim. Acta 72, 4397–4420 (2008). https://doi.org/10.1016/j.gca.2008.06.010

    Article  ADS  CAS  Google Scholar 

  3. C. E. Bucholz, O. Jagoutz, J. A. VanTongeren, J. Setera, and Z. Wang, Geochim. Cosmochim. Acta 207, 154–184 (2017). https://doi.org/10.1016/j.gca.2017.03.027

    Article  ADS  CAS  Google Scholar 

  4. J. Chaumba, Can. Mineral. 52 (3), 473–486 (2014). https://doi.org/10.3749/canmin.52.3.473

    Article  CAS  Google Scholar 

  5. C. Chen, B.-X. Su, Y. Xiao, P. A. Sakyi, X.-Q. He, K.-N. Pang, İ. Uysal, A. Avcı, and L.-P. Qin, Lithos 342–343, 361–369 (2019).

    Article  ADS  Google Scholar 

  6. J. M. Eiler, K. A. Farley, J. W. Valley, E. Hauri, H. Craig, S. Hart, and E. M. Stolper, Geochim. Cosmochim. Acta 61, 2281–2293 (1996). https://doi.org/10.1016/s0016-7037(97)00075-6

    Article  ADS  Google Scholar 

  7. J. M. Eiler, Rev. Mineral. Geochem. 43, 319–364 (2001). https://doi.org/10.1515/9781501508745-008

    Article  CAS  Google Scholar 

  8. J. Eiler, M. Edward, E. M. Stolper, and M. C. McCanta, J. Petrol. 52 (8), 1393–1413 (2011). https://doi.org/10.1093/petrology/egr006

    Article  ADS  CAS  Google Scholar 

  9. T. Engin, M. Balcı, Y. Sümer, and Y. Z. Özkan, Bull. Miner. Res. Explor. 95, 34–56 (1981).

    Google Scholar 

  10. M. A. Ertür, M. Beyarslan, S. L. Chung, and T. H. Lin, Geosci. Front. 9 (6), 1829–1847 (2018). https://doi.org/10.1016/j.gsf.,2017.09.008

    Article  Google Scholar 

  11. R. T. Gregory and H. P. Taylor, J. Geophys. Res. 86, 2737–2755 (1981). https://doi.org/10.1029/jb086ib04p0273

    Article  ADS  CAS  Google Scholar 

  12. C. Höfer, S. Kraus, H. Miller, et al., J. S. Am. Earth Sci. 14, 113–126 (2001). https://doi.org/10.1016/s0895-9811(01)00011-6

    Article  Google Scholar 

  13. T. K. Kyser, Rev. Mineral. Geochem. 16, 141–164 (1986). https://doi.org/10.1515/9781501508936-010

    Article  Google Scholar 

  14. D. Lowry, W. U. Peter, P. W. U. Appel, and H. Rollinson, Precambrian Res. 126 (3), 272–288 (2003). https://doi.org/10.1016/S0301-9268(03)00099-8

    Article  ADS  CAS  Google Scholar 

  15. D. Mattey, D. Lowry, and C. Macpherson, Earth Planet. Sci. Lett. 128, 231–241 (1994). https://doi.org/10.1016/0012-821x(94)90147-3

    Article  ADS  CAS  Google Scholar 

  16. M. T. McCulloch, R. T. Gregory, G. J. Wasserburg, and H. P. Taylor, J. Geophys. Res. 86, 2721–2735 (1981). https://doi.org/10.1029/jb086ib04p02721

    Article  ADS  CAS  Google Scholar 

  17. K. Muehlenbachs, Chem. Geol. 145 (3-4), 263–273 (1998). https://doi.org/10.1016/S0009-2541(97)00147-2

    Article  ADS  CAS  Google Scholar 

  18. Y. Z. Özkan and O. Öztunalı, in Proc. Int. Symp. on the Geology of the Taurus Belt, Sept. 26–29, 1984, Ed. by O. Tekeli and M. C. Göncüoğlu (Ankara, 1984), pp. 285–294.

  19. G. Özek, M. Akgül, N. Nurlu, and N. Yapici, Konjes 20 (2), 29–44 (2017). https://doi.org/10.17780/ksujes.298746

    Article  Google Scholar 

  20. O. Parlak, T. Rızaoğlu, U. Bağcı, et al., Tectonophysics 473 (2), 285–294 (2009).

    Article  Google Scholar 

  21. M. E. Rizeli, A. F. Bingöl, K. L. Wang, and H. Y. Lee, Lithos 436, 106958 (2023).

  22. A. H. F. Robertson, Lithos 65 (1–2), 1–67 (2002). https://doi.org/10.1016/S0024-4937(02)00160-3

    Article  ADS  CAS  Google Scholar 

  23. N. G. Rudraswami, Y. Marrocchi, M. S. Prasad, D. Fernandes, J. Villeneuve, and S. Taylor, Meteorit. Planet. Sci. 54/6, 1347–1361 (2019). https://doi.org/10.1111/maps.13281

    Article  ADS  CAS  Google Scholar 

  24. S. Rouméjon, M. J. Williams, and G. L. Früh-Green, Lithos 323, 156–173 (2018).

    Article  ADS  Google Scholar 

  25. R. O. Sack and M. S. Ghiorso, Am. Min. 76 (5–6), 827–847 (1991).

  26. S. Villiger, P. Ulmer, O. Müntener, and A. B. Thompson, J. Petrol. 45, 2369–2388 (2004). https://doi.org/10.1093/petrology/egh042

    Article  ADS  CAS  Google Scholar 

  27. A. Sar, M. A. Ertürk, and M. Rizeli, Lithos 350–351 (105263) (2019). https://doi.org/10.1016/j.lithos.2019.105263

  28. A. M. C. Şengör and Y. Yılmaz, Tectonophysics 75, 181–241 (1981). https://doi.org/10.1016/0040-1951(81)90275-4

    Article  ADS  Google Scholar 

  29. H. P. Taylor and M. F. Sheppard, Rev. Mineral. Geochem. 16, 227–271 (1986).

    Google Scholar 

  30. I. Uysal, A. Kapsiotis, R. M. Akmazc, et al., Ore Geol. Rev. 93, 98–113 (2018). https://doi.org/10.1016/j.oregeorev.2017.12.017

    Article  Google Scholar 

  31. C. G. Wang, W. L. Xu, D. B. Yang, Y. S. Liu, F. P. Pei, Q. L. Li, and Q. J. Zhou, Geochem. Geophys. Geosyst. 19, 1913–1924 (2018).

    Article  ADS  CAS  Google Scholar 

  32. H. Yu, H. F. Zhang, H. Zou, and J. F. Xu, Am. Min. 107 (5), 904–913 (2022). https://doi.org/10.2138/am-2022-7990

  33. F. Z. Zhao and Y. F. Zheng, Chem. Geol. 193, 59–80 (2003).

    Article  ADS  CAS  Google Scholar 

  34. Y. F. Zheng, Geochim. Cosmochim. Acta 55, 2299–2307 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Y. F. Zheng, Geochim. Cosmochim. Acta 57, 1079–1091 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. Dr. Torsten Vennemann for oxygen isotope analysis at Laussane University Labs. We thank the anonymous reviewers for their helpful criticism and insightful remarks, which significantly enhanced our manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ali Ertürk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, M.A., Kara, H. & Kalender, L. Oxygen Isotope Composition of the Silicate Minerals and Chrome Ores in the Guleman Ophiolite in Southeastern Türkiye. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X23602651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X23602651

Keywords:

Navigation