Skip to main content

Advertisement

Log in

Wildfire burn severity and stream chemistry influence aquatic invertebrate and riparian avian mercury exposure in forested ecosystems

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Terrestrial soils in forested landscapes represent some of the largest mercury (Hg) reserves globally. Wildfire can alter the storage and distribution of terrestrial-bound Hg via reemission to the atmosphere or mobilization in watersheds where it may become available for methylation and uptake into food webs. Using data associated with the 2007 Moonlight and Antelope Fires in California, we examined the long-term direct effects of wildfire burn severity on the distribution and magnitude of Hg concentrations in riparian food webs. Additionally, we quantified the cross-ecosystem transfer of Hg from aquatic invertebrate to riparian bird communities; and assessed the influence of biogeochemical, landscape variables, and ecological factors on Hg concentrations in aquatic and terrestrial food webs. Benthic macroinvertebrate methylmercury (MeHg) and riparian bird blood total mercury (THg) concentrations varied by 710- and 760-fold, respectively, and Hg concentrations were highest in predators. We found inconsistent relationships between Hg concentrations across and within taxa and guilds in response to stream chemical parameters and burn severity. Macroinvertebrate scraper MeHg concentrations were influenced by dissolved organic carbon (DOC); however, that relationship was moderated by burn severity (as burn severity increased the effect of DOC declined). Omnivorous bird Hg concentrations declined with increasing burn severity. Overall, taxa more linked to in situ energetic pathways may be more responsive to the biogeochemical processes that influence MeHg cycling. Remarkably, 8 years post-fire, we still observed evidence of burn severity influencing Hg concentrations within riparian food webs, illustrating its overarching role in altering the storage and redistribution of Hg and influencing biogeochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available at Herring et al. 2023.

References

  • Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK, Elliot JE, Vander Pol SS, Bryan CE (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen EW, Prepas EE, Gabos S, Strachan WMJ, Zhang WP (2005) Methylmercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the boreal plain. Can J Fish Aquat Sci 62:1963–1977

    Article  CAS  Google Scholar 

  • Bank MS, Loftin CS, Jung RE (2005) Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States. Ecotoxicology 14:181–191

    Article  CAS  PubMed  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

  • Barrow NJ, Cox VC (1992) The effects of pH and chloride concentration on mercury sorption II. by a soil. J Soil Sci 43:305–312

    Article  CAS  Google Scholar 

  • Biswas A, Blum JD, Klaue B, Keeler GJ (2007) Release of mercury from Rocky Mountain forest fires. Global Biogeochem Cycles 21(GB1002):1–13

    Google Scholar 

  • Brown JA, Robertson BL, McDonald T (2015) Spatially balanced sampling: application to environmental survey. Procedia Environ Sci 27:6–9

    Article  Google Scholar 

  • Cal Fire (2023) Incidents | CAL FIRE. Accessed 14 Nov 2023

  • Chaves-Ulloa R, Taylor BW, Broadley HJ, Cottingham KL, Baer NA, Weathers KC, Ewing HA, Chen CY (2016) Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. Ecol Appl 26:1771–1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CF, Ju YR, Lim YC, Chen CW, Wu CH, Lin YL, Dong CD (2020) Dry and wet seasonal variation of total mercury, inorganic mercury, and methylmercury formation in estuary and harbor sediments. J Environ Manage 253:109683

    Article  CAS  PubMed  Google Scholar 

  • Cleckner LB, Gilmour CC, Hurley JP, Krabbenhoft DP (1999) Mercury methylation in periphyton of the Florida everglades. Limnol Oceanogr 44:1815–1825

    Article  ADS  CAS  Google Scholar 

  • Craig PJ, Moreton PA (1985) The role of speciation in mercury methylation in sediments and water. Environ Pollut Series B 10:141–158

    Article  CAS  Google Scholar 

  • Cristol DA, Brasso R, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cristol DA, Evers DC (2020) The impact of mercury on North American songbirds: effects, trends, and predictive factors. Ecotoxicology 29:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • DeGraaf RM, Tilghman NG, Anderson SH (1985) Foraging guilds of North American birds. Environ Manag 9:493–536

    Article  ADS  Google Scholar 

  • Desrosier M, Planas D, Mucci A (2006) Mercury methylation in the eipilithon of Boreal Shield aquatic ecosystems. Environ Sci Technol 40:1540–1546

    Article  ADS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton J, Fisher NS (2012) Influence of humic acid on the uptake of aqueous metals by the killifish Fundulus heteroclitus. Environ Toxicol Chem 31:2225–2232

    Article  CAS  PubMed  Google Scholar 

  • Eagles-Smith CA, Herring G, Johnson B, Graw R (2016) Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Environ Pollution 212:279–289

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170–197

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Eidenshink J, Scwind B, Brewer K, Zhu Z, Quayle B, Howard S (2007) A project for monitoring trends in burn severity. Fire Ecology 3:3–21

    Article  Google Scholar 

  • Erdozain M, Kidd K, Kreutweiser D, Sibley P (2019) Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity. Ecol Appl 29:e01889

    Article  PubMed  Google Scholar 

  • Friedli HR, Radke LF, Lu JY, Banic CM, Leatich WR, MacPherson JI (2003) Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos Environ 37:253–267

    Article  ADS  CAS  Google Scholar 

  • Grigal DF (2003) Mercury sequestration in forests and peatlands: a review. J Environ Quality 32:393–405

    CAS  Google Scholar 

  • Herring G, Eagles-Smith CA, Tennant LB, Willacker JJ, Johnson M, Siegel RB, Polasik JS (2023) Mercury in bird blood and benthic aquatic invertebrates in Plumas National Forest, 2015–2016: U.S. Geological Survey data release, https://doi.org/10.5066/P9OZ0R9M

  • Hsu-Kim H, Eckley CS, Achá D, Feng X, Gilmour CC, Jonnson S, Mitchell CPJ (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141–169

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Jackson AK, Eagles-Smith CA, Robinson WD (2021) Differential reliance on aquatic prey subsidies influences mercury exposure in riparian arachnids and songbirds. Ecol Evol 11:7003–7017

    Article  PubMed  PubMed Central  Google Scholar 

  • Jardine TD, Kidd KA, Rasmussen JB (2012) Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation. Ecol Appl 22:843–855

    Article  PubMed  Google Scholar 

  • Kelly EN, Schindler DW, St Louis VL, Donald DB, Vladicka KE (2006) Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proc Natl Acad Sci USA 103:19380–19385

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Rytuba JJ, Brown Jr GE (2003) EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. II. Effects of chloride and sulfate. J Colloids Inter Sci 270:9–20

    Article  ADS  Google Scholar 

  • Knutsen CJ, Varian-Ramos CW (2020) Explaining variation in Colorado songbird blood mercury using migratory behavior, foraging guild, and diet. Ecotoxicology 29:1268–1280

    Article  CAS  PubMed  Google Scholar 

  • Lambertsson L, Nilsson M (2006) Organic material: the primary control on mercury methylation and ambient methylmercury concentrations in estuarine sediments. Environ Sci Tech 40:1822–1829

    Article  CAS  Google Scholar 

  • Mailman M, Bodaly RA (2005) Total mercury, methylmercury, and carbon in fresh and burned plants and soil in Northwestern Ontario. Environ Pollut 138:161–166

    Article  CAS  PubMed  Google Scholar 

  • Mauro J, Guimarães J, Hintelmann H, Watras C, Haack E, Coelho-Souza S (2004) Mercury methylation in macrophytes, periphyton, and water—comparative studies with stable and radio-mercury additions. Anal Bioanal Chem 374:983–989

    Google Scholar 

  • Mehrotra AS, Sedlak DL (2005) Decrease in net mercury methylation rates following iron amendment to anoxicwetland sediment slurries. Environ Sci Tech 39:2564–2570

    Article  CAS  Google Scholar 

  • Merrit RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th edition. Kendall Hunt

  • Mitchell CPJ, Gilmour CC (2008) Methylmercury production in a Chesapeake Bay salt marsh. J Geophys Res Biogeosci 113:G00C04

    Article  Google Scholar 

  • NWCG [National Wildfire Coordinating Group] (2005) Glossary of wildland fire terminology. National interagency fire center. Boise, Idaho http://www.nwcg.gov/pms/pubs/pubs. Htm#PMS205. Accessed 20 May 2021

  • Obrist D, Johnson DW, Edmonds RL (2012) Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. J Plant Nutr Soil Sci 175:68

    Article  CAS  Google Scholar 

  • Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Patel KF, Jakubowski MD, Fernandez IJ et al. (2019) Soil nitrogen and mercury dynamics seven decades after a fire disturbance: a case study at Acadia National Park. Water Air Soil Pollut 230:29

    Article  ADS  Google Scholar 

  • Pyle P (1997) Identification guide to north American birds Part 1: Columbidae to Ploceidae. 2nd edn. Slate Creek Press, Point Reyes Station, CA, USA

  • Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ (2005) Mercury levels in Bicknell’s thrush and other insectivorous passerine birds in montane forests of the northeastern United States and Canada. Ecotoxicology 14:223–240

    Article  CAS  PubMed  Google Scholar 

  • Riva-Murray K, Chasar LC, Bradley PM, Burns DA, Brigham ME, Smith MJ, Abrahamsen TA (2011) Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States. Ecotoxicology 20:1530–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Rogers BM, Balch JK, Goetz SJ, Lehmann CER, Turetsky M (2020) Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ Res Letter 15:030201

    Article  ADS  Google Scholar 

  • Shanely J, Kamman N, Clair TA, Chalmers AT (2005) Physical controls on total and methylmercury in streams and lakes of Northeastern USA. Ecotoxicology 14:125–134

    Article  Google Scholar 

  • Snodgrass J, Jagoe CH, Bryan Jr AL, Brant HA, Burger J (2000) Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish. Can J Fish Aquat Sci 57:171–180

    Article  Google Scholar 

  • Solt F, Hu Y, Kenkel B (2022) Package ‘interplot’. Interplot: Plot the Effects of Variables in Interaction Terms (fhcrc.org)

  • Townsend JM, Driscoll CT, Rimmer CC, McFarland KP (2014) Avian, salamander, and forest floor mercury concentrations increase with elevation in a terrestrial ecosystem. Environ Toxicol Chem 33:208–215

    Article  CAS  PubMed  Google Scholar 

  • Tremblay A, Lucotte M, Rheault I (1996) Methylmercury in a benthic food web of two hydroelectric reservoirs and a natural lake of northern Quebec (Canada). Water Air Soil Pollut 91:255–269

    Article  ADS  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2000) Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Method 7473. Test methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA; US Government Printing Office: Washington, DC

  • U.S. Environmental Protection Agency (2001) Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold-vapor atomic fluorescence spectrometry. Office of Water and Office of Science and Technology, Washington, DC. Method 1630. EPA-821-R-01-020

  • Wagner K, Bengtsson MM, Findlay RH, Battin TL, Ulseth AJ (2017) High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. J Geophys Res: Biogeo 122:1806–1820

    Article  CAS  Google Scholar 

  • Ward DM, Nislow KH, Folt CL (2010) Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Annal New York Acad Sci 1195:62–83

    Article  ADS  CAS  Google Scholar 

  • Webster JP, Kane TJ, Obrist D, Ryan JN, Aiken GR (2016) Estimating mercury emissions resulting from wildlife in forests of the Western United States. Sci Total Environ 568:578–586

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wei X, Hayes DJ, Fernandez I (2021) Fire reduces riverine DOC concentration draining a watershed and alters post-fire DOC recovery patterns. Environ Res 16:024022

    CAS  Google Scholar 

  • Wiener JG, Knights BC, Sandheinrich MB, Jeremiason JD, Brigham ME, Engstrom DR, Woodruff LG, Cannon WF, Balogh SJ (2006) Mercury in Soils, Lakes, and Fish in Voyageurs National Park (Minnesota): Importance of Atmospheric Deposition and Ecosystem Factors. Environ Sci Technol 40:6261–6268

    Article  ADS  CAS  PubMed  Google Scholar 

  • Willacker JW, Eagles-Smith CA, Kowalski BM, Denehy RJ, Jackson AK, Adams EM, Evers DC, Eckley CS, Tate MT, Krabbenhoft DP (2019) Timber harvest alters mercury bioaccumulation and food web structure in headwater streams. Environ Pollut 253:636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windham-Myers L, Marvin-Dipasquale M, Krabbenhoft DP, Agee JL, Cox MH, Heredia-Middleton P, Kakouros E (2009) Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment. J Geophys 114:G2

    Article  Google Scholar 

  • Zoffoli HJ, Varella CA, do Amaral-Sobrinho NM, Zonta E, Tolon-Becerra A (2013) Method of median semi-variance for the analysis of left-censored data: comparison with other techniques using environmental data. Chemosphere 93:1701–1709

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the USDA Forest Service and U.S. Geological Survey (Contaminant Biology Program and Ecosystems Mission Area). We thank W. Catellino, C. Dillingham, K. Doten, C. Emery, S. Hardy, D. Hodges, B. Johnson, C. Kruse, J. Lee, K. Nowlin, J. Pierce, C. Rumrill, R. Taylor, and C. Wisotzky, for field and lab assistance, and S. Peterson and two anonymous reviewers provide constructive feedback on earlier drafts. The use of trade, product, or firm names in the publication is for descriptive purposes only and does not imply endorsement by the U. S. Government. This product paper has been peer-reviewed and approved for publication consistent with USGS Fundamental Science Practices (http://pubs.usgs.gov/circ/1367/).

Author contributions

Conceptualization: MJ, CAE; Methodology: LBT, JJW, MJ., C.A.E.; Formal analysis and investigation: GH, LBT, RBS, JSP; Writing – original draft preparation: GH; Writing – GH, LBT, JJW, MJ, RBS, JSP, CAE; Funding acquisition: MJ, CAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth Herring.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herring, G., Tennant, L.B., Willacker, J.J. et al. Wildfire burn severity and stream chemistry influence aquatic invertebrate and riparian avian mercury exposure in forested ecosystems. Ecotoxicology 33, 131–141 (2024). https://doi.org/10.1007/s10646-024-02730-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-024-02730-6

Keywords

Navigation