Skip to main content
Log in

Antibacterial Activity of Oxadiazole-Montmorillonite Composites

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Resistance of bacteria to antibiotics is a serious human concern since it affects medical treatments performance against bacterial infections. Within the scope of new robust antibiotics development, we propose a heterocyclic–clay composite material. It consists of the association of 5-(2 pyridyl)-1-3-4-oxadiazoles-2-thione with pre-treated montmorillonite (MMT). Different pre-treatments were considered including acidification (H+-MMT) and intercalation with polar polymers facilitating the antibacterial composite material synthesis. The different composite materials that vary in terms of oxadiazole concentration were characterized in terms of structure (molecular, crystalline) using FTIR and XRD, and antibacterial properties. The obtained results showed successful intercalation of polar polymeric materials within acidified montmorillonite clay. The final composite material showed very promising antibacterial properties with reference to two well established antibiotics i.e., Penicillin and Spiramycine. The highest performance was observed for the composite containing polyvinyl alcohol intercalating the acidified montmorillonite with 50 wt % of 1,3,4-oxadiazole compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bhandari, S.V., Bothara, K.G., Raut, M.K., Patil, A.A., Sarkate, A.P., and Mokale, V., Bioorg. Med. Chem., 2008, vol. 16, no. 4, pp. 1822–1831. https://doi.org/10.1016/j.bmc.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  2. Mishra, M.K., Gupta, A.K., Negi, S., and Bhatt, M., Int. J. Pharm. Sci. Res., 2010, vol. 1, no. 3, pp. 172–177.

    Google Scholar 

  3. Moraes, J.D.D., Bertolino, S.R.A., Cuffini, S.L., Ducart, D.F., Bretzke, P.E., and Leonardi, G.R., Int. J. Pharm., 2017, vol. 534, nos. 1–2, pp. 213–219. https://doi.org/10.1016/j.ijpharm.2017.10.031

    Article  CAS  PubMed  Google Scholar 

  4. Murray, H.H., Developments in Clay Science, Amsterdam: Elsevier, 2006, vol. 2, Ch. 1, pp. 7–31. https://doi.org/10.1016/S1572-4352(06)02002-2

  5. Amraoui, A., Gamoudi, S., Baenas, N., Periago, M., and Srasra, E., Clay Miner., 2022, vol. 57, nos. 3–4, pp. 150–159. https://doi.org/10.1180/clm.2022.31

    Article  ADS  CAS  Google Scholar 

  6. Mousavi, S.M., Hashemi, S.A., Salahi, S., Hosseini, M., Amani, A.M., and Babapoor, A., in Current Topics in the Utilization of Clay in Industrial and Medical Applications, InTech, 2018, chapter 9. https://doi.org/10.5772/intechopen.77341

  7. Carretero, M.I., Appl. Clay Sci., 2002, vol. 21, pp. 155–163. https://doi.org/10.1016/S0169-1317(01)00085-0

  8. Lobato-Aguilar, H., Herrera-Kao, W., Duarte-Aranda, S., Aguilar-Pérez, F., Oliva-Arias, A., Rejón-Moo, V., and Cervantes-Uc, J., Clay Miner., 2023, vol. 58, no. 2, pp. 102–112. https://doi.org/10.1180/clm.2023.16

  9. Nones, J., Nones, J., Riella, H.G., Poli, A., and Kuhnen, N.C., Int. J. Appl. Res. Technol., 2016, vol. 5, pp. 29–36.

    Google Scholar 

  10. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., and He, H., Appl. Clay Sci., 2016, vol. 123, pp. 239–258. https://doi.org/10.1016/j.clay.2015.12.024

    Article  CAS  Google Scholar 

  11. Funes, I.G.A., Peralta, M.E., Pettinari, G.R., Carlos, L., and Parolo, M.E., Appl. Clay Sci., 2020, vol. 195, p.105738. https://doi.org/10.1016/j.clay.2020.105738

    Article  CAS  Google Scholar 

  12. Ajemba, R.O. and Onukwuli, O.D., Int. J. Eng. Res. Technol., 2012, vol. 1, no. 3, pp. 1−13. https://doi.org/10.17577/IJERTV1IS3194

  13. He, H., Yang, D., Yuan, P., Shen, W., and Frost, R.L., J. Colloid Interface Sci., 2006, vol. 297, pp. 235–243. https://doi.org/10.1016/j.jcis.2005.10.031

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Benny, K.G., Theng, J.C., Gates, W.P., and Yuan, G., in Soil Mineral Microbe-Organic Interactions, Huang, Q., Huang, P.M., Violante, A., Eds., Berlin: Springer, 2008, pp. 145−174.https://doi.org/10.1007/978-3-540-77686-4_6

  15. Perelomov, L., Mandzhieva, S., Minkina, T., Atroshchenko, Y., Perelomova, I., Bauer, T., Pinsky, D., and Barakhov, A., Minerals, 2021, vol. 11, no. 7, p. 707. https://doi.org/10.3390/min11070707

    Article  ADS  CAS  Google Scholar 

  16. Jafarbeglou, M., Abdouss, M., Shoushtari, A.M., and Jafarbeglou, M., RSC Adv., 2016, vol. 6, no. 55, pp. 50002–50016. https://doi.org/10.1039/C6RA03942A

    Article  ADS  CAS  Google Scholar 

  17. Ul Haque, S., Nasar, A., and Inamuddin, in Applications of Nanocomposite Materials in Drug Delivery, Woodhead Publishing Series in Biomaterials, New York: Woodhead, 2018, pp. 633–648. https://doi.org/10.1016/B978-0-12-813741-3.00028-5

  18. Lazzara, G., Riela, S., and Fakhrullin, R., Ther. Delivery, 2017, vol. 8, no. 8, pp. 633–646. https://doi.org/10.4155/tde-2017-0041

    Article  CAS  Google Scholar 

  19. Belbachir, M. and Bensaoula, A., US Patent 7094823, 2006.

  20. Ouis, N., Belarbi, A., Mesli, S., and Benharrats, N., Chem. Chem. Technol., 2023, vol. 17, no. 1, pp. 118–125. https://doi.org/10.23939/chcht17.01.118

    Article  CAS  Google Scholar 

  21. Patel, D.K., Prajapati, S.M., Panchal, S.N., and Patel, H.D., Synth. Commun., 2014, vol. 44, no. 13, pp. 1859–1875. https://doi.org/10.1080/00397911.2013.879901

    Article  CAS  Google Scholar 

  22. Benhammadi, S., Othman, A.A., Derdour, A., and Mami, A., Asian J. Chem., 2010, vol. 22, no. 7, pp. 5535–5542. https://asianpubs.org/index.php/ ajchem/article/view/11673.

    CAS  Google Scholar 

  23. Hudzicki, J., Kirby-Bauer Disk Diffusion Susceptibility Test Protocol, Am. Soc. Microbiol., 2009.

  24. Caccamo, M.T., Mavilia, G., Mavilia, L., Lombardo, D., and Magazù, S., Self-assembly processes in hydrated montmorillonite by FTIR investigations, Materials (Basel), 2020, vol. 13, no. 5, p. 1100. https://doi.org/10.3390/ma13051100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tyagi, B., Chudasama, C.D., and Jasra, R.V., Spectrochim. Acta, Part A, 2006, vol. 64, pp. 273–278. https://doi.org/10.1016/j.saa.2005.07.018

    Article  ADS  CAS  Google Scholar 

  26. Kherroub, D., Belbachir, M., and Lamouri, S., Orient. J. Chem., 2014, vol. 30, no. 4, pp. 1647–1651. https://doi.org/10.13005/ojc/300424

    Article  CAS  Google Scholar 

  27. Li, Y., Tian, H., Jia, Q., Niu, P., Xiang, A., Liu, D., and Qin, Y., J. Appl. Polym. Sci., 2015, vol. 132, no. 43, p. 42706. https://doi.org/10.1002/app.42706

    Article  CAS  Google Scholar 

  28. Zhu, S., Peng, H., Chen, J., Li, H., Cao, Y., Yang, Y., and Feng, Z., Appl. Surf. Sci., 2013, vol. 276, pp. 502–511. https://doi.org/10.1016/j.apsusc.2013.03.123

    Article  ADS  CAS  Google Scholar 

  29. Jianzhong, M., Dangge, G., Bin, L., Yun, C., and Jianfang, D., Mater. Manuf. Processes, 2007, vol. 22, no. 6, pp. 715–720. https://doi.org/10.1080/10426910701385283

    Article  CAS  Google Scholar 

  30. Abd Alrazzak, N., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 454, p. 012096. https://doi.org/10.1088/1757-899X/454/1/012096

  31. Jeon, I. and Nam, K., Sci. Rep., 2019, vol. 9, p. 9878. https://doi.org/10.1038/s41598-019-46175-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lagaly, G., Appl. Clay Sci., 1999, vol. 15, pp. 1–9. https://doi.org/10.1016/S0169-1317(99)00009-5

    Article  CAS  Google Scholar 

  33. Ogata, N., Kawakage, S., and Ogihara, T., J. Appl. Polym. Sci., 1997, vol. 66, no. 3, pp. 573–581. https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W

    Article  CAS  Google Scholar 

  34. Shen, Z., Simon, G.P., and Cheng, Y.B., J. Aust. Ceram. Soc., 1998, vol. 34, pp. 1–6.

    CAS  Google Scholar 

  35. Breen, C., Appl. Clay Sci., 1999, vol. 15, pp. 187–219. https://doi.org/10.1016/S0169-1317(99)00024-1

    Article  CAS  Google Scholar 

  36. Chikh, K., Larbi, B., Kherroub, D., and Meghabar, R., Pharma Chem., 2017, vol. 9, no. 6, p. 90. https://www.derpharmachemica.com/archive/dpc-volume-9-issue-6-year-2017.html.

    CAS  Google Scholar 

  37. Giannelis, E., Krishnamoorti, R., and Manias, E., Adv. Polym. Sci., 1999, vol. 138, pp. 107–147. https://doi.org/10.1007/3-540-69711-X_3

    Article  CAS  Google Scholar 

  38. Alexandre, M. and Dubois, P., Mater. Sci. Eng. R, 2000, vol. 28, pp. 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  39. Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, R., Manias, E., Giannelis, E.P., and Phillips, S.H., Chem. Mater., 2000, vol. 12, no. 7, pp. 1866–1873.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Ouis.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nora Ouis, Benhammadi, S. & Larjem, S. Antibacterial Activity of Oxadiazole-Montmorillonite Composites. Biochem. Moscow Suppl. Ser. B 17, 136–144 (2023). https://doi.org/10.1134/S1990750823600255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600255

Keywords:

Navigation