1887

Abstract

Accurate reconstruction of antibiotic resistance gene (ARG) plasmids from Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this work, we present an improved method to reconstruct plasmids using short reads. We developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by combining the output of three different binary classification tools. We showed that plasmidEC is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. Additionally, we optimized gplas, a graph-based tool that bins plasmid-predicted contigs into distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large sequencing coverage variations and can be combined with the output of any binary classifier. The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and F1-Score (median=0.812) when reconstructing ARG plasmids and exceeded the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, our method offers an excellent alternative to reconstruct ARG plasmids in .

Funding
This study was supported by the:
  • H2020 Marie Skłodowska-Curie Actions (Award 801,133)
    • Principle Award Recipient: SergioArredondo-Alonso
  • Health~Holland (Award LSHM19138)
    • Principle Award Recipient: AnitaC Schürch
  • NCOH
    • Principle Award Recipient: AnitaC Schürch
  • zonmw (Award 541 003 005)
    • Principle Award Recipient: AnitaC Schürch
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001193
2024-02-20
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/2/mgen001193.html?itemId=/content/journal/mgen/10.1099/mgen.0.001193&mimeType=html&fmt=ahah

References

  1. Kern WV, Rieg S. Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect 2020; 26:151–157 [View Article] [PubMed]
    [Google Scholar]
  2. Day MJ, Doumith M, Abernethy J, Hope R, Reynolds R et al. Population structure of Escherichia coli causing bacteraemia in the UK and Ireland between 2001 and 2010. J Antimicrob Chemother 2016; 71:2139–2142 [View Article] [PubMed]
    [Google Scholar]
  3. Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 2007; 51:1987–1994 [View Article] [PubMed]
    [Google Scholar]
  4. Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. mBio 2016; 7:e01191-16 [View Article] [PubMed]
    [Google Scholar]
  5. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655 [View Article] [PubMed]
    [Google Scholar]
  6. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017; 8:15784 [View Article] [PubMed]
    [Google Scholar]
  7. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2019; 65:34–44 [View Article] [PubMed]
    [Google Scholar]
  8. McInnes RS, McCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 2020; 53:35–43 [View Article] [PubMed]
    [Google Scholar]
  9. Che Y, Yang Y, Xu X, Břinda K, Polz MF et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci U S A 2021; 118:e2008731118 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang S, Abbas M, Rehman MU, Huang Y, Zhou R et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environ Pollut 2020; 266:115260 [View Article] [PubMed]
    [Google Scholar]
  11. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275–2289 [View Article] [PubMed]
    [Google Scholar]
  12. Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689 [View Article] [PubMed]
    [Google Scholar]
  13. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7:173 [View Article] [PubMed]
    [Google Scholar]
  14. Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. Elife 2020; 9:e53886 [View Article] [PubMed]
    [Google Scholar]
  15. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. J Clin Microbiol 2017; 55:2380–2390 [View Article] [PubMed]
    [Google Scholar]
  16. Acman M, van Dorp L, Santini JM, Balloux F. Large-scale network analysis captures biological features of bacterial plasmids. Nat Commun 2020; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  17. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun 2020; 11:3602 [View Article] [PubMed]
    [Google Scholar]
  18. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 2017; 3:e000128 [View Article] [PubMed]
    [Google Scholar]
  19. Paganini JA, Plantinga NL, Arredondo-Alonso S, Willems RJL, Schürch AC. Recovering Escherichia coli plasmids in the absence of long-read sequencing data. Microorganisms 2021; 9:1613 [View Article] [PubMed]
    [Google Scholar]
  20. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  21. Arredondo-Alonso S, Bootsma M, Hein Y, Rogers MRC, Corander J et al. gplas: a comprehensive tool for plasmid analysis using short-read graphs. Bioinformatics 2020; 36:3874–3876 [View Article] [PubMed]
    [Google Scholar]
  22. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016; 26:1721–1729 [View Article] [PubMed]
    [Google Scholar]
  23. Royer G, Decousser JW, Branger C, Dubois M, Médigue C et al. PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microb Genom 2018; 4:e000211 [View Article] [PubMed]
    [Google Scholar]
  24. van der Graaf-van Bloois L, Wagenaar JA, Zomer AL. RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Microb Genom 2021; 7:000683 [View Article] [PubMed]
    [Google Scholar]
  25. Schwengers O, Barth P, Falgenhauer L, Hain T, Chakraborty T et al. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb Genom 2020; 6:mgen000398 [View Article] [PubMed]
    [Google Scholar]
  26. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J et al. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 2018; 4:e000224 [View Article] [PubMed]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  28. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  30. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  31. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013 http://arxiv.org/abs/1303.3997
  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  33. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  34. Arredondo-Alonso S, Top J, McNally A, Puranen S, Pesonen M et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 2020; 11:e03284-19 [View Article] [PubMed]
    [Google Scholar]
  35. Li Y, Luo Y. Performance-weighted-voting model: an ensemble machine learning method for cancer type classification using whole-exome sequencing mutation. Quant Biol 2020; 8:347–358 [View Article] [PubMed]
    [Google Scholar]
  36. Millán Arias P, Alipour F, Hill KA, Kari L, Chen C-H. DeLUCS: deep learning for unsupervised clustering of DNA sequences. PLoS One 2022; 17:e0261531 [View Article] [PubMed]
    [Google Scholar]
  37. Wattanapornprom W, Thammarongtham C, Hongsthong A, Lertampaiporn S. Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization. Life 2021; 11:293 [View Article] [PubMed]
    [Google Scholar]
  38. Xue T, Zhang S, Qiao H. i6mA-VC: a multi-classifier voting method for the computational identification of DNA N6-methyladenine sites. Interdiscip Sci 2021; 13:413–425 [View Article] [PubMed]
    [Google Scholar]
  39. Douarre P-E, Mallet L, Radomski N, Felten A, Mistou M-Y. Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids. Front Microbiol 2020; 11:483 [View Article] [PubMed]
    [Google Scholar]
  40. Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E et al. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. Sci Adv 2021; 7:eabe3868 [View Article] [PubMed]
    [Google Scholar]
  41. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  42. Gomi R, Wyres KL, Holt KE. Detection of plasmid contigs in draft genome assemblies using customized Kraken databases. Microb Genom 2021; 7:000550 [View Article] [PubMed]
    [Google Scholar]
  43. Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709–730 [View Article] [PubMed]
    [Google Scholar]
  44. Razavi M, Kristiansson E, Flach C-F, Larsson DGJ. The association between insertion sequences and antibiotic resistance genes. mSphere 2020; 5:e00418-20 [View Article] [PubMed]
    [Google Scholar]
  45. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  46. Kamruzzaman M, Patterson JD, Shoma S, Ginn AN, Partridge SR et al. Relative strengths of promoters provided by common mobile genetic elements associated with resistance gene expression in gram-negative bacteria. Antimicrob Agents Chemother 2015; 59:5088–5091 [View Article] [PubMed]
    [Google Scholar]
  47. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258:72–77 [View Article] [PubMed]
    [Google Scholar]
  48. Müller R, Chauve C. HyAsP, a greedy tool for plasmids identification. Bioinformatics 2019; 35:4436–4439 [View Article] [PubMed]
    [Google Scholar]
  49. Mallawaarachchi VG, Wickramarachchi AS, Lin Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 2021; 16:3 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001193
Loading
/content/journal/mgen/10.1099/mgen.0.001193
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error