Skip to main content
Log in

Solution-driven bioinspired design: Themes of latch-mediated spring-actuated systems

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Our ability to measure and image biology at small scales has been transformative for developing a new generation of insect-scale robots. Because of their presence in almost all environments known to humans, insects have inspired many small-scale flying, swimming, crawling, and jumping robots. This inspiration has affected all aspects of the robots’ design, ranging from gait specification, materials properties, and mechanism design to sensing, actuation, control, and collective behavior schemes. This article highlights how insects have inspired a new class of small and ultrafast robots and mechanisms. These new robots can circumvent motors’ force-velocity tradeoffs and achieve high-acceleration jumping, launching, and striking through latch-mediated spring-actuated (LaMSA) movement strategies. In the article, we apply a solution-driven bioinspired design framework to highlight the process for developing LaMSA-inspired robots and systems, starting with understanding the key biological themes, abstracting them to solution-neutral principles, and implementing such principles into engineered systems. Throughout the article, we emphasize the roles of modeling, fabrication, materials, and integration in developing bioinspired LaMSA systems and identify critical future enablers such as integrative design approaches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. E. Farrell Helbling, R.J. Wood, Appl. Mech. Rev. 70(1), 010801 (2018)

    Article  ADS  Google Scholar 

  2. H. Hussein, A. Damdam, L. Ren, Y. Obeid Charrouf, J. Challita, M. Zwain, H. Fariborzi, Adv. Intell. Syst. 5(9), 2300168 (2023)

    Article  Google Scholar 

  3. R. St Pierre, S. Bergbreiter, Annu. Rev. Control Robot. Auton. Syst. 2(1), 231 (2019)

    Article  Google Scholar 

  4. K.B. Yesin, K. Vollmers, B.J. Nelson, “Analysis and Design of Wireless Magnetically Guided Microrobots in Body Fluids,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2004 (ICRA '04), vol. 2 (2004), pp. 1333–1338. https://doi.org/10.1109/ROBOT.2004.1308009

  5. S. Fatikow, U. Rembold, “An Automated Microrobot-Based Desktop Station for Micro Assembly and Handling of Micro-Objects,” in Proceedings of the 1996 IEEE Conference on Emerging Technologies and Factory Automation (ETFA ’96), vol. 2 (1996), pp. 586–592. https://doi.org/10.1109/ETFA.1996.573951

  6. M. Takeda, “Applications of MEMS to Industrial Inspection,” 14th IEEE Int. Conf. on Micro Electro Mech. Syst. (MEMS 2001) Tech. Dig. (2001), pp. 182–191. https://doi.org/10.1109/MEMSYS.2001.906510

  7. N. Kawahara, T. Suto, T. Hirano, Y. Ishikawa, T. Kitahara, N. Ooyama, T. Ataka, Microsyst. Technol. 3(2), 37 (1997). https://doi.org/10.1007/s005420050052

    Article  Google Scholar 

  8. J. Law, J. Yu, W. Tang, Z. Gong, X. Wang, Y. Sun, ACS Nano 17, 12971 (2023)

    Article  CAS  PubMed  Google Scholar 

  9. S. Palagi, P. Fischer, Nat. Rev. Mater. 3(6), 113 (2018)

    Article  ADS  CAS  Google Scholar 

  10. G. De Croon, J. Dupeyroux, S. Fuller, J. Marshall, Sci. Robot. 7(67), 6334 (2022)

    Article  Google Scholar 

  11. M. Ilton, M.S. Bhamla, X. Ma, S.M. Cox, L.L. Fitchett, Y. Kim, J.-S. Koh, D. Krishnamurthy, C.-Y. Kuo, F.Z. Temel, Science 360(6387), 1082 (2018)

    Article  Google Scholar 

  12. S.J. Longo, S.M. Cox, E. Azizi, M. Ilton, J.P. Olberding, R. St Pierre, S.N. Patek, J. Exp. Biol. 222(15), 197889 (2019). https://doi.org/10.1242/jeb.197889

    Article  Google Scholar 

  13. S. Patek, J. Baio, B. Fisher, A. Suarez, Proc. Natl. Acad. Sci. U.S.A. 103(34), 12787 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Steinhardt, N.-S.P. Hyun, J.-S. Koh, G. Freeburn, M.H. Rosen, F.Z. Temel, S.N. Patek, R.J. Wood, Proc. Natl. Acad. Sci. U.S.A. 118(33), 2026833118 (2021)

  15. M. Noh, S.-W. Kim, S. An, J.-S. Koh, K.-J. Cho, IEEE Trans. Robot. 28(5), 1007 (2012). https://doi.org/10.1109/TRO.2012.2198510

    Article  ADS  Google Scholar 

  16. S. Divi, C. Reynaga, E. Azizi, S. Bergbreiter, J. R. Soc. Interface 20(200), 20220778 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  17. E.W. Hawkes, C. Xiao, R.-A. Peloquin, C. Keeley, M.R. Begley, M.T. Pope, G. Niemeyer, Nature 604(7907), 657 (2022). https://doi.org/10.1038/s41586-022-04606-3

    Article  ADS  CAS  PubMed  Google Scholar 

  18. V. Zaitsev, O. Gvirsman, U. Ben-Hanan, A. Weiss, A. Ayali, G. Kosa, “Locust-Inspired Miniature Jumping Robot,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Hamburg, September 28–October 2, 2015), pp. 553–558. https://doi.org/10.1109/IROS.2015.7353426

  19. V. Zaitsev, O. Gvirsman, U.B. Hanan, A. Weiss, A. Ayali, G. Kosa, Bioinspir. Biomim. 10(6), 066012 (2015). https://doi.org/10.1088/1748-3190/10/6/066012

    Article  ADS  PubMed  Google Scholar 

  20. M. Helms, S.S. Vattam, A.K. Goel, Des. Stud. 30(5), 606 (2009)

    Article  Google Scholar 

  21. J. Yen, M.J. Weissburg, M. Helms, A.K. Goel, “Biologically Inspired Design: A Tool for Interdisciplinary Education,” in Biomimetics: Nature-Based Innovation, ed. by Y. Bar-Cohen, Biomimetics Series (CRC Press, Boca Raton, 2011), chap. 10, p. 361

  22. H.C. Bennet-Clark, J. Exp. Biol. 63(1), 53 (1975). https://doi.org/10.1242/jeb.63.1.53

    Article  CAS  PubMed  Google Scholar 

  23. M. Burrows, Nature 424, 509 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. H. Bennet-Clark, E. Lucey, J. Exp. Biol. 47(1), 59 (1967)

    Article  CAS  PubMed  Google Scholar 

  25. G.M. Farley, M.J. Wise, J.S. Harrison, G.P. Sutton, C. Kuo, S.N. Patek, J. Exp. Biol. 222(15), 201129 (2019). https://doi.org/10.1242/jeb.201129

    Article  Google Scholar 

  26. S.J. Longo, R. St Pierre, S. Bergbreiter, S. Cox, B. Schelling, S. Patek, J. Exp. Biol. 226(2), 244363 (2023)

    Article  Google Scholar 

  27. S.N. Patek, W.L. Korff, R.L. Caldwell, Nature 428(6985), 819 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. G.P. Sutton, R. St Pierre, C.-Y. Kuo, A.P. Summers, S. Bergbreiter, S. Cox, S.N. Patek, J. Exp. Biol. 225(14), 244077 (2022)

    Article  Google Scholar 

  29. F.J. Larabee, A.A. Smith, A.V. Suarez, R. Soc. Open Sci. 5(12), 181447 (2018). https://doi.org/10.1098/rsos.181447

    Article  PubMed  PubMed Central  Google Scholar 

  30. J.F. Jorge, S.N. Patek, J. R. Soc. Interface 20(205), 20230234 (2023)

    Article  PubMed  Google Scholar 

  31. Y. Forterre, J.M. Skotheim, J. Dumais, L. Mahadevan, Nature 433(7024), 421 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. A. Pringle, S.N. Patek, M. Fischer, J. Stolze, N.P. Money, Mycologia 97(4), 866 (2005). https://doi.org/10.1080/15572536.2006.11832777

    Article  PubMed  Google Scholar 

  33. O. Bolmin, L. Wei, A.M. Hazel, A.C. Dunn, A. Wissa, M. Alleyne, J. Exp. Biol. 222(12), 196683 (2019)

    Article  Google Scholar 

  34. J.S. Harrison, S.N. Patek, J. Exp. Biol. 226(4), 244645 (2023)

    Article  Google Scholar 

  35. A. Cook, K. Pandhigunta, M.A. Acevedo, A. Walker, R.L. Didcock, J.T. Castro, D. O’Neill, R. Acharya, M.S. Bhamla, P.S.L. Anderson, M. Ilton, Integr. Org. Biol. 4(1), 032 (2022). https://doi.org/10.1093/iob/obac032

    Article  Google Scholar 

  36. N.P. Hyun, J.P. Olberding, A. De, S. Divi, X. Liang, E. Thomas, R. St Pierre, E. Steinhardt, J. Jorge, S.J. Longo, Bioinspir. Biomim. 18(2), 026002 (2023)

    Article  ADS  Google Scholar 

  37. O. Bolmin, J.J. Socha, M. Alleyne, A.C. Dunn, K. Fezzaa, A.A. Wissa, Proc. Natl. Acad. Sci. U.S.A. 118(5), 2014569118 (2021)

    Article  Google Scholar 

  38. G.P. Sutton, E. Mendoza, E. Azizi, S.J. Longo, J.P. Olberding, M. Ilton, S.N. Patek, Integr. Comp. Biol. 59(6), 1609 (2019)

    Article  Google Scholar 

  39. S. Patek, J. Exp. Biol. 226 (Suppl. 1), 245262 (2023)

    Article  MathSciNet  Google Scholar 

  40. J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, Science 336(6086), 1275 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. S. Ling, D.L. Kaplan, M.J. Buehler, Nat. Rev. Mater. 3(4), 18016 (2018)

    Article  Google Scholar 

  42. N.A. Yaraghi, N. Guarín-Zapata, L.K. Grunenfelder, E. Hintsala, S. Bhowmick, J.M. Hiller, M. Betts, E.L. Principe, J.-Y. Jung, L. Sheppard, Adv. Mater. 28(32), 6835 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. B. Natarajan, J.W. Gilman, Philos. Trans. R. Soc. A 376(2112), 20170050 (2018)

    Article  ADS  Google Scholar 

  44. R.P. Behera, H. Le Ferrand, Matter 4(9), 2831 (2021)

    Article  CAS  Google Scholar 

  45. B. Zhang, J. Yang, Y. Li, J. Zhang, S. Niu, Z. Han, L. Ren, Int. J. Mech. Sci. 244, 108073 (2023)

    Article  Google Scholar 

  46. X. Liang, H. Fu, A.J. Crosby, Proc. Natl. Acad. Sci. U.S.A. 119(1), 2118161119 (2022)

    Article  Google Scholar 

  47. Y. Wang, Q. Wang, M. Liu, Y. Qin, L. Cheng, O. Bolmin, M. Alleyne, A. Wissa, R.H. Baughman, D. Vella, Proc. Natl. Acad. Sci. U.S.A. 120(5), e2210651120 (2023)

    Article  Google Scholar 

  48. V.M. Ortega-Jimenez, E.J. Challita, B. Kim, H. Ko, M. Gwon, J.-S. Koh, M.S. Bhamla, Proc. Natl. Acad. Sci. U.S.A. 119(46), 2211283119 (2022)

    Article  Google Scholar 

  49. L. Zhang, T. Mathur, A. Wissa, M. Alleyne, “Launching Engineered Prototypes to Better Understand the Factors That Influence Click Beetle Jump Capacity,” 2023 IEEE Conference on Control Technology and Applications (CCTA) (Bridgetown, August 16–18, 2023), pp. 681–686

  50. P. Aerts, Integr. Comp. Biol. 53(6), 1015 (2013)

    Article  Google Scholar 

  51. V.A. Webster-Wood, O. Akkus, U.A. Gurkan, H.J. Chiel, R.D. Quinn, Sci. Robot. 2(12), 9281 (2017)

    Article  Google Scholar 

  52. V.A. Webster, K.J. Chapin, E.L. Hawley, J.M. Patel, O. Akkus, H.J. Chiel, R.D. Quinn, “Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines,” in Proceedings of the Conference on Biomimetic and Biohybrid Systems, 5th International Conference, Living Machines 2016, ed. by N.F. Lepora, A. Mura, M. Mangan, P.F.M.J. Verschure, M. Desmulliez, T.J. Prescott (Springer, 2016), pp. 365–374

  53. S.-M. An, J. Ryu, M. Cho, K.-J. Cho, Smart Mater. Struct. 21(5), 055009 (2012)

    Article  ADS  Google Scholar 

  54. J.-S. Koh, E. Yang, G.-P. Jung, S.-P. Jung, J.H. Son, S.-I. Lee, P.G. Jablonski, R.J. Wood, H.-Y. Kim, K.-J. Cho, Science 349(6247), 517 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. J.-S. Koh, S.-P. Jung, M. Noh, S.-W. Kim, K.-J. Cho, “Flea Inspired Catapult Mechanism with Active Energy Storage and Release for Small Scale Jumping Robot,” 2013 IEEE International Conference on Robotics and Automation (ICRA) (Karlsruhe, May 6–10, 2013), pp. 26–31

  56. S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, R. Wood, “Micro Artificial Muscle Fiber Using NiTi Spring for Soft Robotics,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (St. Louis, October 10–15, 2009), pp. 2228–2234

  57. L. Xue, K. Atli, S. Picak, C. Zhang, B. Zhang, A. Elwany, R. Arroyave, I. Karaman, Acta Mater. 215, 117017 (2021)

    Article  CAS  Google Scholar 

  58. J. Ma, B. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, R. Arroyave, I. Karaman, A. Elwany, Sci. Rep. 7(1), 46707 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. A.P. Gerratt, S. Bergbreiter, Smart Mater. Struct. 22(1), 014010 (2012)

    Article  ADS  Google Scholar 

  60. A.P. Gerratt, I. Penskiy, S. Bergbreiter, J. Micromech. Microeng. 20(10), 104011 (2010)

    Article  ADS  Google Scholar 

  61. M. Kovac, M. Fuchs, A. Guignard, J.-C. Zufferey, D. Floreano, “A Miniature 7g Jumping Robot,” 2008 IEEE International Conference on Robotics and Automation (ICRA) (Pasadena, May 19–23, 2008), pp. 373–378. https://doi.org/10.1109/ROBOT.2008.4543236

  62. J. Zhao, J. Xu, B. Gao, N. Xi, F.J. Cintron, M.W. Mutka, L. Xiao, IEEE Trans. Robot. 29(3), 602 (2013). https://doi.org/10.1109/TRO.2013.2249371. Accessed 31 Aug 2023

  63. D.W. Haldane, M.M. Plecnik, J.K. Yim, R.S. Fearing, Sci. Robot. 1(1), 2048 (2016)

    Article  Google Scholar 

  64. R.J. Wood, S. Avadhanula, R. Sahai, E. Steltz, R.S. Fearing, J. Mech. Des. 130(5), 052304 (2008)

    Article  Google Scholar 

  65. A.V. Alvarez, M.R. Devlin, N.D. Naclerio, E.W. Hawkes, “Jumping on Air: Design and Modeling of Latch-Mediated, Spring-Actuated Air-Jumpers,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Kyoto, October 23–27, 2022), pp. 13220–13226

  66. J.P. Whitney, P.S. Sreetharan, K.Y. Ma, R.J. Wood, J. Micromech. Microeng. 21(11), 115021 (2011)

    Article  ADS  Google Scholar 

  67. Y. Wang, B. Ramirez, K. Carpenter, C. Naify, D.C. Hofmann, C. Daraio, Extreme Mech. Lett. 33, 100557 (2019). https://doi.org/10.1016/j.eml.2019.100557

    Article  Google Scholar 

  68. A.P. Garland, K.M. Adstedt, Z.J. Casias, B.C. White, W.M. Mook, B. Kaehr, B.H. Jared, B.T. Lester, N.S. Leathe, E. Schwaller, B.L. Boyce, Extreme Mech. Lett. 40, 100847 (2020). https://doi.org/10.1016/j.eml.2020.100847

    Article  Google Scholar 

  69. J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, C. Daraio, Extreme Mech. Lett. 28, 31 (2019). https://doi.org/10.1016/j.eml.2019.02.001

    Article  Google Scholar 

  70. Y. Xing, J. Yang, Int. J. Impact Eng. 157, 103982 (2021). https://doi.org/10.1016/j.ijimpeng.2021.103982

    Article  Google Scholar 

  71. J. Stampfl, R. Liska, A. Ovsianikov, J. Stampfl (eds.), Multiphoton Lithography: Techniques, Materials, and Applications (Wiley-VCH Verlag, 2016)

  72. S. Divi, X. Ma, M. Ilton, R. Stierre, B. Eslami, S. Patek, S.J. Bergbreiter, J. R. Soc. Interface 17(168), 20200070 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  73. L. Viornery, C. Goode, G. Sutton, S. Bergbreiter, “Achieving Extensive Trajectory Variation in Impulsive Robotic Systems,” 2023 IEEE International Conference on Robotics and Automation (ICRA) (London, May 29–June 2, 2023), pp. 1134–1140. https://doi.org/10.1109/ICRA48891.2023.10160463

  74. N. Fukamachi, H. Mochiyama, “Palm-Top Jumping and Crawling Robot Using Snap-Through Buckling of Arched Elastica Supported by Ω-Shaped Frame,” 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (Busan, July 7–11, 2015), pp. 1102–1107. https://doi.org/10.1109/AIM.2015.7222687

  75. J. Carlson, J. Friedman, C. Kim, C. Sung, “REBOund: Untethered Origami Jumping Robot with Controllable Jump Height,” 2020 IEEE International Conference on Robotics and Automation (ICRA) (Paris, May 31–August 31, 2020), pp. 10089–10095. https://doi.org/10.1109/ICRA40945.2020.9196534

  76. S.N. Patek, M.V. Rosario, J.R.A. Taylor, J. Exp. Biol. 216(7), 1317 (2013)

    CAS  PubMed  Google Scholar 

  77. G. Chen, J. Tu, X. Ti, H. Hu, J. Bionic Eng. 17, 1109 (2020)

    Article  ADS  Google Scholar 

  78. F. Rossi, B. Castellani, A. Nicolini, Energy Procedia 82, 805 (2015)

    Article  Google Scholar 

  79. E. Mendoza, E. Azizi, J. Exp. Biol. 224(24), 243180 (2021)

    Article  Google Scholar 

  80. Y. Ruan, M. Zhang, R. Kundrata, L. Qiu, S. Ge, X. Yang, X. Chen, S. Jiang, Insects 13(3), 248 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  81. M. Tadayon, S. Amini, A. Masic, A. Miserez, Adv. Funct. Mater. 25(41), 6437 (2015)

    Article  CAS  Google Scholar 

  82. F.J. Larabee, W. Gronenberg, A.V. Suarez, J. Exp. Biol. 220(17), 3062 (2017)

    Article  PubMed  Google Scholar 

  83. E.M. Abbott, T. Nezwek, D. Schmitt, G.S. Sawicki, Integr. Comp. Biol. 59(6), 1546 (2019)

    Article  PubMed  Google Scholar 

  84. J. Burdick, P. Fiorini, Int. J. Robot. Res. 22(78), 653 (2003)

    Article  Google Scholar 

  85. U. Scarfogliero, C. Stefanini, P. Dario, “Design and Development of the Long-Jumping ‘Grillo’ Mini Robot,” in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (Rome, April 10–14, 2007), pp. 467–472. https://doi.org/10.1109/ROBOT.2007.363830

  86. M. Duduta, F.C.J. Berlinger, R. Nagpal, D.R. Clarke, R.J. Wood, F.Z. Temel, Smart Mater. Struct. 28(9), 09LT01 (2019)

    Article  Google Scholar 

  87. A. Mehta, J. DelPreto, D. Rus, J. Mech. Robot. 7(2), 021015 (2015). https://doi.org/10.1115/1.4029496

    Article  Google Scholar 

  88. S. Kriegman, D. Blackiston, M. Levin, J. Bongard, Proc. Natl. Acad. Sci. U.S.A. 117(4), 1853 (2020). https://doi.org/10.1073/pnas.1910837117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. S. Bergbreiter, K.S.J. Pister, “Design of an Autonomous Jumping Microrobot,” in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA) (Rome, April 10–14, 2007), pp. 447–453

  90. M. Babaei, J. Gao, A. Clement, K. Dayal, M.R. Shankar, Soft Matter 17(5), 1258 (2021). https://doi.org/10.1039/D0SM01352H

    Article  ADS  CAS  PubMed  Google Scholar 

  91. A. Spielberg, B. Araki, C. Sung, R. Tedrake, D. Rus, “Functional Co-optimization of Articulated Robots,” 2017 IEEE International Conference on Robotics and Automation (ICRA) (Singapore, May 29–June 3, 2017), pp. 5035–5042. https://doi.org/10.1109/ICRA.2017.7989587

  92. N. Cheney, J. Bongard, V. SunSpiral, H. Lipson, J. R. Soc. Interface 15(143), 20170937 (2018). https://doi.org/10.1098/rsif.2017.0937

    Article  PubMed  PubMed Central  Google Scholar 

  93. G. Zardini, D. Milojevic, A. Censi, E. Frazzoli, “Co-design of Embodied Intelligence: A Structured Approach,” 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Prague, September 27–October 1, 2021), pp. 7536–7543. https://doi.org/10.1109/IROS51168.2021.9636513. https://ieeexplore.ieee.org/document/9636513/. Accessed 31 Aug 2023

  94. W. Chen, M. Fuge, J. Mech. Des. 141(11), 111403 (2019). https://doi.org/10.1115/1.4044076

    Article  Google Scholar 

  95. K. Guo, Z. Yang, C.-H. Yu, M.J. Buehler, Mater. Horiz. 8(4), 1153 (2021). https://doi.org/10.1039/D0MH01451F

    Article  CAS  PubMed  Google Scholar 

  96. W. Huang, D. Restrepo, J.-Y. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Zavattieri, D. Kisailus, Adv. Mater. 31(43), 1901561 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation (CAREER Award No. 2219644). This work was also partially supported by the Presidential Fellowship from Carnegie Mellon University. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated by the US Department of Energy. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under Contract No. DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title, and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the US Government. The publisher acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this written work or allow others to do so, for US Government purposes. The DOE will provide public access to the results of federally sponsored research in accordance with the DOE Public Access Plan.

Funding

T.M. and A.W. were partially supported by the National Science Foundation CAREER Award No. 2219644. S.B. and L.V. were partially supported by the Presidential Fellowship from Carnegie Mellon University. O.B. performed this work, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated by the US Department of Energy. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under Contract No. DE-NA0003525.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and approved the final version of the manuscript. T.M. and L.V. wrote, edited, and reviewed the paper and created figures. O.B. wrote sections in the paper, created the table, and edited and reviewed the paper. S.B. and A.W. conceived and designed the paper outline, provided funding, and edited and reviewed the paper.

Corresponding author

Correspondence to Aimy Wissa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, T., Viornery, L., Bolmin, O. et al. Solution-driven bioinspired design: Themes of latch-mediated spring-actuated systems. MRS Bulletin 49, 136–147 (2024). https://doi.org/10.1557/s43577-024-00664-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-024-00664-2

Keywords

Navigation