Skip to main content
Log in

A comparison of Indian and South American monsoon variability and likely causes

  • Review
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The main goal of the present work is to compare and contrast the characteristics of distinct monsoon systems like the Indian monsoon system (IMS) and South American monsoon system (SAMS) for the period (1979–2022). In addition, we discuss in some detail the theoretical aspects of the two monsoon systems by examining the energetics and the applicability of “convective quasi-equilibrium, (CQE).” We have also analyzed the precipitation interannual variability of SAMS and IMS considering neutral, El Niño, and La Niña years. Then, a discussion of the applicability of CQE along with the recent changes in surface entropy is presented. In our analysis, we found that interannual variability in the case of SAMS is less than that of IMS, and rainfall of SAMS is not drastically affected by ENSO when compared to IMS. We observed that rainfall characteristics over IMS are more complex than SAMS. The annual cycle of the vertically integrated total kinetic energy (KE) over SAMS is maximum in Austral spring, while the precipitation is higher in Austral summer. This is in sharp contrast to the IMS, where the maximum KE and rainfall coincide, both occurring in July and August. Further analysis showed that the conversion from the mean available potential energy PZ to the eddy available potential energy PE and conversion from PE to KE are important over SAMS. This shows that in South America, baroclinic conversions associated with baroclinic instability are important in austral summer, while over IMS, baroclinic conversions are not important in boreal summer. Our results support CQE for the IMS, but in the case of El Niño, we found that CQE is invalid. For SAMS, the applicability of CQE is climatologically doubtful, but during El Niño, the applicability of CQE is robustly visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

GPCP rainfall data is available through https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GPCP/.V2p3/.CDR/index.html?Set-Language=en, ERA 5 reanalysis data is available through https://www.ecmwf.int, and ENSO indices can be accessed through https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

References

  • Adler R et al (2018) The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9:138. https://doi.org/10.3390/atmos9040138

    Article  Google Scholar 

  • Allen M, Babiker M, Chen Y, de Coninck HC (2018) IPCC SR15: summary for policymakers. In IPCC Special Report global warming of 1.5 ºC. Intergovern Panel Clim Change

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17(13):2493–2525

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment. Part i J Atmos Sci 31(3):674–701

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophy Res Letts 28(23):4499–4502

    Article  Google Scholar 

  • Asutosh A, Vinoj V (2024) Role of local absorbing aerosols in modulating Indian summer monsoon rainfall. Sci of the Tot Environ 910:168663

    Article  CAS  Google Scholar 

  • Bhargavi VSL, Rao VB, Naidu CV, Govardhan D, Kumar PV (2022) Recent calamitous climate change in India (1990–2019). Theor Appl Climatol 151(1–2):707–724

    Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nat 463:218–222. https://doi.org/10.1038/nature08707

    Article  CAS  Google Scholar 

  • Boos WR, Kuang Z (2013) Sensitivity of the South Asian monsoon to elevated and non- elevated heating. Sci Rep 3:1192. https://doi.org/10.1038/srep01192

    Article  CAS  Google Scholar 

  • Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1(8):515–519. https://doi.org/10.1038/ngeo248

    Article  CAS  Google Scholar 

  • Bresciani C, Herdies DL, Figueroa SN, Buchard V et al (2024) The South American tropopause aerosol layer (SATAL). Bull Amer Meteor Soc 105:176–192. https://doi.org/10.1175/BAMS-D-23-0074.1

    Article  Google Scholar 

  • Carvalho LM, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity form persistence and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108

    Article  Google Scholar 

  • Carvalho LMD, Cavalcanti IF (2016) The South American monsoon system (SAMS). The monsoons and climate change, 121–148

  • Castro Cunningham CA, Albuquerque De, Cavalcanti IF (2006) Intraseasonal modes of variability affecting the South Atlantic Convergence Zone. Int J Clim 26(9):1165–1180

    Article  Google Scholar 

  • Chang CP, Krishnamurti TN (1987) Monsoon meteorology. Oxford University Press, Oxford, p 544

    Google Scholar 

  • Chang CP, Johnson RH, Ha KJ, Kim D, Lau GNC, Wang B, Bell MM, Luo YL (2018) The multiscale global monsoon system research and prediction challenges in weather and climate. Bull Am Meteorol Soc 99(Es1):49–53

    Google Scholar 

  • Chang CP and World Meteorological Organization (2011) The global monsoon system research and forecast World Scientific Series on Asia-Pacific weather and climate v 5 (Singapore: World Scientific) pp xii p 594

  • Charney JG (1947) The dynamics of long waves in baroclinic westerly current. J Meteor 4:135–162. https://doi.org/10.1177/0309133309339797

    Article  Google Scholar 

  • Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus 1(2):38–54

    Article  Google Scholar 

  • Charney JG, Eliassen A (1964) On the growth of the hurricane depression. J Atmos Sci 21(1):68–75

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. In The atmosphere - a challenge (295–321). American Meteorological Society Boston MA

  • Chowdary JS, Gnanaseelan C, Chakravorty S (2013) Impact of northwest Pacific anticyclone on the Indian summer monsoon region. Theoret Appl Climatol 113:329–336

    Article  Google Scholar 

  • Collini EA, Berbery EH, Barros VR, Pyle ME (2008) How does soil moisture influence the early stages of the South American monsoon? J Clim 21(2):195–213

    Article  Google Scholar 

  • da Silva LA, Satyamurty P (2013) Evolution of the Lorenz energy cycle in the Intertropical Convergence Zone in the South American sector of the Atlantic Ocean. J Clim 26(10):3466–3481

    Article  Google Scholar 

  • Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7:17347. https://doi.org/10.1038/s41598-017-17599-1

    Article  CAS  Google Scholar 

  • Dutta S, Vishwarajashree L (2011) A pilot study on the energetics aspects of stagnation in the advance of southwest monsoon. Challenges and opportunities in agrometeorology. Springer, Berlin Heidelberg, pp 187–194

    Chapter  Google Scholar 

  • Dutta S, Narkhedkar SG, Devi S, Sikka DR (2012) A composite energetics study for contrasting south west monsoon years in the recent decade. Atmósfera 25(2):109–126

    Google Scholar 

  • Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45(7):1143–1155

    Article  Google Scholar 

  • Emanuel K (2000) Quasi-equilibrium thinking. Int Geophys Ser 5(70):225–256

    Article  Google Scholar 

  • Emanuel K (2007) Quasi-equilibrium dynamics of the tropical atmosphere. Global Circ Atmos 186:218

    Google Scholar 

  • Emanuel K (2020) The relevance of theory for contemporary research in atmospheres, oceans, and climate. AGU Advances. 1(2):2019AV000129

    Article  Google Scholar 

  • Emanuel KA, David NJ, Bretherton CS (1994) On large-scale circulations in convecting atmospheres. Q J R Meteo Soc 120(519):1111–1143

    Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon. GDP Agricult Econ Politic Week 41(47):4887–4895

    Google Scholar 

  • Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J Clim 17(1):47–66

    Article  Google Scholar 

  • Geen R, Bordoni S, Battisti DS, Hui K (2020) Monsoons ITCZs and the concept of the global monsoon. Rev Geophy 58(4):e2020RG000700

    Article  Google Scholar 

  • Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J Clim 16:263–280. https://doi.org/10.1175/1520-0442(2003)016%3c0263:TENIOT%3e2.0.CO;2

    Article  Google Scholar 

  • Grimm AM (2019) Madden–Julian oscillation impacts on South American summer monsoon season: precipitation anomalies extreme events teleconnections and role in the MJO cycle. Clim Dyn 53:907–932. https://doi.org/10.1007/s00382-019-04622-6

    Article  Google Scholar 

  • Grimm AM, Zilli MT (2009) Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J Clim 22(9):2257–2275

    Article  Google Scholar 

  • Grimm AM, Pal JS, Giorgi F (2007) Connection between spring conditions and peak summer monsoon rainfall in South America: role of soil moisture surface temperature and topography in eastern Brazil. J Clim 20(24):5929–5945

    Article  Google Scholar 

  • Grimm AM, Dominguez F, Cavalcanti IF, Cavazos T, Gan MA, Silva Dias PL, Barreiro M (2020) South and North American monsoons: characteristics life cycle variability modeling and prediction. In: The multiscale global monsoon system pp 49–66

  • Gutierrez RE, Silva Dias PL, Veiga JA, Camayo R, Dos Santos A (2009) Multivariate analysis of the energy cycle of the South American rainy season. Int J Climatol: A J R Meteorolo Soc 29(15):2256–2269

    Article  Google Scholar 

  • Ha KJ, Kim BH, Chung ES, Chan JC, Chang CP (2020) Major factors of global and regional monsoon rainfall changes: natural versus anthropogenic forcing. Enviro Res Letts 15(3):034055

    Article  Google Scholar 

  • Halley R (1686) An historical account of the trade winds and monsoons et. Phil Trans Roy Soc London. 16: 153–158

  • Halley E (1753) An historical account of the trade winds and monsoons observable in the seas between and near the tropics with an attempt to assign the physical cause of the said winds. Phil Trans Roy Soc London 16(183):153–168

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Hersbach H, Dee D (2016) ERA5 reanalysis is in production. ECMWF Newsletter No. 147, ECMWF, Reading, UnitedKingdom,7. http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf

  • Hirata FE, Grimm AM (2016) The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Clim Dyn 46:3041–3055. https://doi.org/10.1007/s00382-015-2751-6

    Article  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R (2021) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmos Phys 133:1–4

    Article  Google Scholar 

  • Hunt KM, Turner AG, Inness PM, Parker DE, Levine RC (2016) On the structure and dynamics of Indian monsoon depressions. Mon Wea Rev 144(9):3391–3416

    Article  Google Scholar 

  • Hurley JV, Boos WR (2013) Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J Clim 26(23):9507–9527

    Article  Google Scholar 

  • Kousky VE (1979) Frontal influences on northeast Brazil. Mon Wea Rev 107(9):1140–1153

    Article  Google Scholar 

  • Krishnamurti TN, Bounoua L (1995) An introduction to numerical weather prediction techniques. CRC Press

    Google Scholar 

  • Krishnamurti TN, Ramanathan Y (1982) Sensitivity of the monsoon onset to differential heating. J Atmos Sci 39(6):1290–1306

    Article  Google Scholar 

  • Krishnamurti TN, Sinha MC, Jha B, Mohanty UC (1998) A study of South Asian monsoon energetics. J Atmos Sci 55(15):2530–2548

    Article  Google Scholar 

  • Kumar PV, Naidu CV, Prasanna K (2020) Recent unprecedented weakening of Indian summer monsoon in warming environment. Theor Appl Climatol 140:467–486

    Article  Google Scholar 

  • Kuo HL (1956) Forced and free meridional circulations in the atmosphere. J Atmos Sci 13(6):561–568

    Google Scholar 

  • Liebmann B, Kiladis GN, Marengo J, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic Convergence Zone. J Clim 12(7):1877–1891

    Article  Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7(2):157–167

    Article  Google Scholar 

  • Lorenz EN (1960) Generation of available potential energy and the intensity of the general circulation. Dyn clim.

  • Manabe S, Möller F (1961) On the radiative equilibrium and heat balance of the atmosphere. Mon Wea Rev 89(12):503–532

    Article  Google Scholar 

  • Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21(4):361–385

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PD, Cavalcanti IF, Carvalho LM, Berbery EH, Ambrizzi T, Vera CS, Saulo AC (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21

    Article  Google Scholar 

  • Mechoso, C.R., Robertson, A.W., Ropelewski, C.F., Grimm, A.M., 2005. The American monsoon systems. In Proceeding of the 3rd international workshop on monsoons. Hangzhou China November (pp. 2–6)

  • Mishra SK, Rao VB (2001) The energetics of an upper tropospheric cyclonic vortex over north-east Brazil. Q J R Meteorolo Soc 127(577):2329–2351

    Google Scholar 

  • Mohanty A (2020) Preparing India for extreme climate events: mapping hotspots and response mechanisms. New Delhi: Council on Energy, Environment and Water

  • Naidu CV, Durgalakshmi K, Satyanarayana GC, Malleswararao L, Ramakrishna SSVS, Mohan JR, Nagaratna K (2011) An observational evidence of climate change during global warming era? Glob Planet Chang 79:11–19

    Article  Google Scholar 

  • Neelin JD, Yu JY (1994) Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part I: Analytical theory. J Atmos Sci 51(13):1876–1894

    Article  Google Scholar 

  • Nie J, Boos WR, Kuang Z (2010) Observational evaluation of a convective quasi-equilibrium view of monsoons. J Clim 23(16):4416–4428

    Article  Google Scholar 

  • Nieto-Ferreira R, Rickenbach TM (2011) Regionality of monsoon onset in South America: a three-stage conceptual model. Int J Climatol 31(9):1309–1321

    Article  Google Scholar 

  • Nieto-Ferreira R, Rickenbach TM, Wright EA (2011) The role of cold fronts in the onset of the monsoon season in the South Atlantic Convergence Zone. Q J R Meteorolo Soc 137(657):908–922

    Article  Google Scholar 

  • Oort AH (1989) Angular momentum cycle in the atmosphere–ocean–solid earth system. Bull Ameri Meteorolo Soc 70(10):1231–1242

    Article  Google Scholar 

  • Ooyama KA (1964) Dynamical model for the study of tropical cyclone development. Geofisica Intl (mexico) 4:187–198

    Google Scholar 

  • Parodi A, Emanuel K (2009) A theory for buoyancy and velocity scales in deep moist convection. J Atmos Sci 66(11):3449–3463

    Article  Google Scholar 

  • Parthasarathy B, Sontakke NA, Munot AA, Kothawale DR (1987) Droughts/floods in summer monsoons season over different meteorological sub-divisions of India for the period 1871–1980. J Climatol 7:57–70

    Article  Google Scholar 

  • Ramage CS (1971) Meteorology Academic Press. 296 pp

  • Ramakrishna SS, Brahmananda Rao V, Sravani A, Vijaya Saradhi N, Harikishan G (2010) A diagnostic study of monsoon energetics for two contrasting years. In: Ann Geophys (Vol. 28, No. 12, pp. 2201–2212) Göttingen, Germany: Copernicus Publications.

  • Randel WJ, Stanford JL (1985) The observed life cycle of a baroclinic instability. J Atmos Sci 42(13):1364–1373

    Article  Google Scholar 

  • Rao BV, Trivikrama Rao S (1971) A theoretical and synoptic study of western disturbances. Pure Appl Geophy 90:193–208

    Article  Google Scholar 

  • Rao VB, Cavalcanti IF, Hada K (1996) Annual variation of rainfall over Brazil and water vapor characteristics over South America. J Geophy Res: Atmos 101(D21):26539–26551

    Article  Google Scholar 

  • Rao BRS, Rao DVB, Rao VB (2004) Decreasing trend in the strength of the tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys Res Lett 31(14):L14103. https://doi.org/10.1029/2004GL019817

    Article  Google Scholar 

  • Rao VB, Camila CF, Franchito SH, Ramakrishna SSVS (2008) In a changing climate weakening tropical easterly jet induces more violent tropical storms over the north Indian Ocean. Geophys Res Lett 35(15):L15710. https://doi.org/10.1029/2008GL034729

    Article  Google Scholar 

  • Rao VB, Franchito SH, Gan MA, Gerolamo RO (2014) Duration of the South America summer monsoon is increasing. Atmos Sci Letts 15(2):110–113

    Article  Google Scholar 

  • Reboita MS, Ambrizzi T, Crespo NM, Dutra LM, Ferreira GW, Rehbein A, Drumond A, da Rocha RP, Souza CA (2021) Impacts of teleconnection patterns on South America climate. Ann New York Acad Sci 1504(1):116–153

    Article  Google Scholar 

  • Reboita MS, Teodoro TA, Ferreira GW, Souza CA (2022) Ciclo de vida do sistema de monção da América do Sul: Clima presente e futuro. Revista Brasileira De Geografia Física 15(01):343–358

    Article  Google Scholar 

  • Reboita MS, Ferreira GWdS, Ribeiro JGM, da Rocha RP, Rao VB (2023) South American monsoon lifecycle projected by statistical downscaling with CMIP6-GCMs. Atmos 14(9):1380. https://doi.org/10.3390/atmos14091380

    Article  Google Scholar 

  • Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55

    Article  Google Scholar 

  • Saltzman B (1968) Steady-state solutions for the axially-symmetric climate variables. Pure Appl Geophys 69:237–259. https://doi.org/10.1007/BF00874919

    Article  Google Scholar 

  • Saltzman B (1962) Selected papers on the theory of thermal convection: with special application to the Earth’s planetary atmosphere.

  • Singh MS (2019) Limits on the extent of the solsticial Hadley cell: the role of planetary rotation. J Atmos Sci 76(7):1989–2004

    Article  Google Scholar 

  • Smyth JE, Ming Y (2021) Investigating the impact of land surface characteristics on monsoon dynamics with idealized model simulations and theories. J Clim 34(19):7943–7958

    Google Scholar 

  • Stone PH (1978) Baroclinic adjustment. J Atmos Sci 35(4):561–571

    Article  Google Scholar 

  • Stone PH, Nemet B (1996) Baroclinic adjustment: a comparison between theory, observations, and models. J Atmos Sci 53(12):1663–1674

    Article  Google Scholar 

  • Teodoro TA, Reboita MS, Llopart M, Da Rocha RP (2021) Ashfaq M. Climate change impacts on the South American monsoon system and its surface–atmosphere processes through RegCM4 CORDEX-CORE projections. Ear Sys and Enviro 5:825–847

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2003) Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J Clim 16(22):3706–3722

    Article  Google Scholar 

  • Ueda H, Ohba M, Xie SP (2009) Important factors for the development of the Asian–northwest Pacific summer monsoon. J Clim 22(3):649–669

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Guztler D, Lettenmaier D, Marengo JA, Mechoso CR, Nogues-Paegle J (2005) A unified view of the American monsoon systems. J Clim.

  • Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Letts 33(6).

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Ocen 44(3–4):165–183

    Article  CAS  Google Scholar 

  • Wu G, Tibetan ZY (1998) Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Wea Rev 126(4):913–927

    Article  Google Scholar 

  • Wu X, Grabowski WW, Moncrieff MW (1998) Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes Part I: Two-dimensional modeling study. J Atmos Sci 55(17):2693–2714

    Article  Google Scholar 

  • Yano JI, Plant RS (2012) Convective quasi‐equilibrium. Rev Geophy 50(4).

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to NOAA/OAR/ESRL PD, Boulder, Colorado, USA, for providing GPCP precipitation products and NCEP reanalysis datasets.

Author information

Authors and Affiliations

Authors

Contributions

V. B.R. did the study conception, design and wrote the manuscript with the help of V.S.L.B and other co-authors. Data collection and analysis is done by M.B.R. V. B.R, V.S.L.B, M.B.R, M.S.R and A. M.G contributed in discussions and the final manuscript. All authors commented on previous versions and prepared the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Brahmananda Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.B., Bhargavi, V.S.L., Rosa, M.B. et al. A comparison of Indian and South American monsoon variability and likely causes. Theor Appl Climatol 155, 3505–3523 (2024). https://doi.org/10.1007/s00704-024-04870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-04870-5

Keywords

Navigation