Skip to main content
Log in

A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem

  • Research
  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract  

This paper presents two novel algorithmic frameworks to address the logit-based stochastic user equilibrium traffic assignment problem (SUE-TAP). Following the different variant of the gradient projection (termed as GP2) algorithm, we propose an improved GP2 algorithm (IGP) for the SUE-TAP. This study initially presents a smart approach for determining the allocation of more or less effort to specific origin–destination (OD) pairs. Subsequently, the TAP can be decomposed by different OD pairs, whereas the proposed IGP algorithm is designed based on the serial scheme (i.e., the Gauss–Seidel method). Therefore, a new parallel algorithm P-IGP is proposed, which integrates the block coordinate descent (BCD) method and the IGP algorithm. In specific, the independent OD pairs can be separated into several blocks, and the OD-based restricted subproblems within each block can be solved in parallel. Then, we outline the entire process of implementing the P-IGP algorithm to address the SUE-TAP. Several numerical experiments are conducted to verify the proposed algorithms. The results reveal that the proposed IGP algorithm demonstrates significantly speeder convergence in comparison to the traditional GP2 algorithm, achieving a remarkable acceleration of approximately 12%. Furthermore, the performance of the P-IGP algorithm surpasses that of the proposed IGP algorithm, and it can further achieve a notable 4–5-fold enhancement in convergence efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Algorithm 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The network data used in this study are publicly available, and it is accessible on the website: https://github.com/bstabler/TransportationNetworks.

References

  • Aboudina A, Abdulhai B (2017) A bi-level distributed approach for optimizing time-dependent congestion pricing in large networks: A simulation-based case study in the Greater Toronto Area. Transp Res Part C Emerg Technol 85:684–710

    Article  Google Scholar 

  • Akamatsu T (1996) Cyclic flows, Markov process and stochastic traffic assignment. Transp Res Part B Methodol 30(5):369–386

    Article  Google Scholar 

  • Akamatsu T (1997) Decomposition of path choice entropy in general transport networks. Transp Sci 31(4):349–362

    Article  Google Scholar 

  • Akuh R, Zhong M, Raza A, Dong Y (2023) A method for evaluating the balance of land use and multimodal transport system of new towns/cities using an integrated modeling framework. Multimodal Transp 2(1):100063

    Article  Google Scholar 

  • Ameli M, Lebacque JP, Leclercq L (2020) Simulation-based dynamic traffic assignment: Meta-heuristic solution methods with parallel computing. Comput-Aided Civil Infrastruct Eng 35(10):1047–1062

    Article  Google Scholar 

  • Balzer L, Leclercq L (2022) Modal equilibrium of a tradable credit scheme with a trip-based MFD and logit-based decision-making. Transp Res Part C Emerg Technol 139:103642

    Article  Google Scholar 

  • Bar-Gera H (2002) Origin-based algorithm for the traffic assignment problem. Transp Sci 36(4):398–417

    Article  Google Scholar 

  • Bar-Gera H, Boyce D, Nie Y (2012) User-equilibrium route flows and the condition of proportionality. Transp Res Part B Methodol 46(3):440–462

    Article  Google Scholar 

  • Beck A, Tetruashvili L (2013) On the convergence of block coordinate descent type methods. SIAM J Optim 23(4):2037–2060

    Article  MathSciNet  Google Scholar 

  • Bekhor S, Toledo T (2005) Investigating path-based solution algorithms to the stochastic user equilibrium problem. Transp Res Part B Methodol 39(3):279–295

    Article  Google Scholar 

  • Bekhor S, Reznikova L, Toledo T (2007) Application of cross-nested logit route choice model in stochastic user equilibrium traffic assignment. Transp Res Rec 2003(1):41–49

    Article  Google Scholar 

  • Bell MGH (1995) Alternatives to Dial’s logit assignment algorithm. Transp Res Part B Methodol 29(4):287–295

    Article  Google Scholar 

  • Bell MGH (1995) Stochastic user equilibrium assignment in networks with queues. Transp Res Part B Methodol 29(2):125–137

    Article  Google Scholar 

  • Chen R, Meyer RR (1988) Parallel optimization for traffic assignment. Math Program 42(2):327–345

    Article  MathSciNet  Google Scholar 

  • Chen A, Jayakrishnan R, Tsai WK (2002) Faster Frank-Wolfe traffic assignment with new flow update scheme. J Transp Eng 128(1):31–39

    Article  Google Scholar 

  • Chen A, Xu X, Ryu S, Zhong Z (2013) A self-adaptive Armijo stepsize strategy with application to traffic assignment models and algorithms. Transportmetrica A Transp Sci 9(7–8):695–712

    Article  Google Scholar 

  • Chen X, Liu Z, Zhang K, Wang Z (2020) A parallel computing approach to solve traffic assignment using path-based gradient projection algorithm. Transp Res Part C Emerg Technol 120:102809

    Article  Google Scholar 

  • Daganzo CF, Sheffi Y (1977) On stochastic models of traffic assignment. Transp Sci 11(3):83–111

    Article  Google Scholar 

  • Damberg O, Lundgren JT, Patriksson M (1996) An algorithm for the stochastic user equilibrium problem. Transp Res Part B Methodol 30(2):115–131

    Article  Google Scholar 

  • Dial RB (1971) A probabihstic multipath traffic assignment algorithm which obviates path enumeration. Transp Res 5(2):83–111

    Article  Google Scholar 

  • Du M, Tan H, Chen A (2021) A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models. Eur J Oper Res 290(3):982–999

    Article  MathSciNet  Google Scholar 

  • Fercoq O, Richtarik P (2015) Accelerated, parallel, and proximal coordinate descent. SIAM J Optim 25(4):1997–2023

    Article  MathSciNet  Google Scholar 

  • Fisk C (1980) Some developments in equilibrium traffic assignment. Transp Res Part B Methodol 14(3):243–255

    Article  MathSciNet  Google Scholar 

  • Florian M, Gendreau M (2001) Applications of parallel computing in transportation. Parallel Comput 27(12):1521–1522

    Article  MathSciNet  Google Scholar 

  • Galligari A, Sciandrone M (2018) A convergent and fast path equilibration algorithm for the traffic assignment problem. Optim Methods Softw 33(2):354–371

    Article  MathSciNet  Google Scholar 

  • Gentile G (2014) Local User Cost Equilibrium: a bush-based algorithm for traffic assignment. Transportmetrica A Transp Sci 10(1):15–54

    Article  Google Scholar 

  • Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper Res Lett 26(3):127–136

    Article  MathSciNet  Google Scholar 

  • Gu Y, Chen A, Kitthamkesorn S (2022) Accessibility-based vulnerability analysis of multi-modal transportation networks with weibit choice models. Multimodal Transp 1(3):100029

    Article  Google Scholar 

  • Guo X, Yang H, Liu T-L (2010) Bounding the inefficiency of logit-based stochastic user equilibrium. Eur J Oper Res 201(2):463–469

    Article  MathSciNet  Google Scholar 

  • Huang H, Li Z (2007) A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS. Eur J Oper Res 176(3):1464–1477

    Article  Google Scholar 

  • Huang D, Wang S (2022) A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme. Multimodal Transp 1(1):100006

    Article  Google Scholar 

  • Jafari E, Pandey V, Boyles SD (2017) A decomposition approach to the static traffic assignment problem. Transp Res Part B Methodol 105:270–296

    Article  Google Scholar 

  • Janson BN, Southworth F (1992) Estimating departure times from traffic counts using dynamic assignment. Transp Res Part B Methodol 26(1):3–16

    Article  MathSciNet  Google Scholar 

  • Jiang Y, Nielsen OA (2022) Urban multimodal traffic assignment. Multimodal Transp 1(3):100027

    Article  Google Scholar 

  • Larsson T, Patriksson M (1992) Simplicial decomposition with disaggregated representation for the traffic assignment problem. Transp Sci 26(1):4–17

    Article  Google Scholar 

  • Lee D, Meng Q, Deng W (2010) Origin-based partial linearization method for the stochastic user equilibrium traffic assignment problem. J Transp Eng-Asce 136(1):52–60

    Article  Google Scholar 

  • Leventhal D, Lewis AS (2010) Randomized methods for linear constraints: convergence rates and conditioning. Math Oper Res 35(3):641–654

    Article  MathSciNet  Google Scholar 

  • Liu Z, Meng Q (2013) Distributed computing approaches for large-scale probit-based stochastic user equilibrium problems. J Adv Transp 47(6):553–571

    Article  Google Scholar 

  • Liu H, He X, He B (2009) Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium problem. Netw Spat Econ 9(4):485–503

    Article  ADS  MathSciNet  Google Scholar 

  • Liu Z, Wang S, Meng Q (2014) Optimal joint distance and time toll for cordon-based congestion pricing. Transp Res Part B Methodol 69:81–97

    Article  Google Scholar 

  • Liu Z, Zhang H, Zhang K, Zhou Z (2023) Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem. Transp Res Part E Logist Transp Rev 177:103233

    Article  Google Scholar 

  • Liu Z, Chen X, Hu J, Wang S, Zhang K, Zhang H (2023) An alternating direction method of multipliers for solving user equilibrium problem. Eur J Oper Res 310:1072–1084

    Article  MathSciNet  Google Scholar 

  • Maher M (1998) Algorithms for logit-based stochastic user equilibrium assignment. Transp Res Part B Methodol 32(8):539–549

    Article  Google Scholar 

  • Patrascu A, Necoara I (2015) Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization. J Global Optim 61(1):19–46

    Article  MathSciNet  Google Scholar 

  • Patriksson M (1994) The traffic Assignment Problem: Models and Methods. Courier Dover Publications

    Google Scholar 

  • Powell WB, Sheffi Y (1982) The convergence of equilibrium algorithms with predetermined step sizes. Transp Sci 16(1):45–55

    Article  MathSciNet  Google Scholar 

  • Ren Q, Xu M (2024) Injury severity analysis of highway-rail grade crossing crashes in non-divided two-way traffic scenarios: A random parameters logit model. Multimodal Transp 3(1):100109

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Sheffi Y, Powell WB (1982) An algorithm for the equilibrium assignment problem with random link times. Networks 12(2):191–207

    Article  MathSciNet  Google Scholar 

  • Smith MJ, Watling DP (2016) A route-swapping dynamical system and Lyapunov function for stochastic user equilibrium. Transp Res Part B Methodol 85:132–141

    Article  Google Scholar 

  • Sun S, Szeto WY (2018) Logit-based transit assignment: Approach-based formulation and paradox revisit. Transp Res Part B Methodol 112:191–215

    Article  Google Scholar 

  • Wang H (2022) Transportation-enabled urban services: A brief discussion. Multimodal Transp 1(2):100007

    Article  Google Scholar 

  • Wang Z, Zhang K, Chen X, Wang M, Liu R, Liu Z (2021) An improved parallel block coordinate descent method for the distributed computing of traffic assignment problem. Transportmetrica A Transp Sci 18(3):1376–1400

    Article  Google Scholar 

  • Wardrop JD (1952) Some theoretical aspects of road traffic research. Proc Inst Civil Eng 1(3):325–362

    Google Scholar 

  • Watling D (2006) User equilibrium traffic network assignment with stochastic travel times and late arrival penalty. Eur J Oper Res 175(3):1539–1556

    Article  MathSciNet  Google Scholar 

  • Watling DP, Rasmussen TK, Prato CG, Nielsen OA (2018) Stochastic user equilibrium with a bounded choice model. Transp Res Part B Methodol 114:254–280

    Article  Google Scholar 

  • Xie J, Nie Y, Liu X (2018) A greedy path-based algorithm for traffic assignment. Transp Res Rec 2672(48):36–44

    Article  Google Scholar 

  • Yang H (1999) System optimum, stochastic user equilibrium, and optimal link tolls. Transp Sci 33(4):354–360

    Article  Google Scholar 

  • Yang D, Cheng D, Rang W, Wang Y (2022) Joint optimization of MapReduce scheduling and network policy in hierarchical data centers. IEEE Trans Cloud Comput 10(1):461–473

    Article  Google Scholar 

  • Ying J, Miyagi T (2001) Sensitivity analysis for stochastic user equilibrium network flows - A dual approach. Transp Sci 35(2):124–133

    Article  Google Scholar 

  • Zhang H, Liu Z, Wang J, Wu Y (2023) A novel flow update policy in solving traffic assignment problems: Successive over relaxation iteration method. Transp Res Part E Logist Transp Rev 174:103111

    Article  Google Scholar 

  • Zhang K, Zhang H, Cheng Q, Chen X, Wang Z, Liu Z (2023) A customized two-stage parallel computing algorithm for solving the combined modal split and traffic assignment problem. Comput Oper Res 154(4):106193

    Article  MathSciNet  Google Scholar 

  • Zhou B, Li X, He J (2014) Exploring trust region method for the solution of logit-based stochastic user equilibrium problem. Eur J Oper Res 239(1):46–57

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study is supported by the Key Project (No. 52131203) of National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Honggang Zhang and Zhiyuan Liu; Methodology: Honggang Zhang, Zhiyuan Liu, and Yicheng Zhang; Formal analysis and investigation: Honggang Zhang, Weijie Chen, and Chenyang Zhang; Writing-review and editing: Honggang Zhang, Zhiyuan Liu, and Yicheng Zhang; Funding acquisition: Zhiyuan Liu; Writing-original draft: Honggang Zhang. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhiyuan Liu.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Z., Zhang, Y. et al. A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem. Netw Spat Econ (2024). https://doi.org/10.1007/s11067-024-09617-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11067-024-09617-3

Keywords

Navigation