Skip to main content

Advertisement

Log in

Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.

Graphical Abstract

This review focuses on current researches on the resistance mechanisms of lenvatinib, describes a series of potential biomarkers, outlines the current application status, and prospects of drugs used in combination with lenvatinib and summarizes ongoing clinical trials involving lenvatinib combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

RTKs:

Receptor tyrosine kinases

TKI:

Tyrosine kinase inhibitor

VEGFR:

Vascular endothelial growth factor receptor

HCC:

Hepatocellular carcinoma

FGFR:

Fibroblast growth factor receptor

PDGFR:

Platelet-derived growth factor receptor

RET:

Proto-oncogenes rearranged during transfection

KIT:

Stem cell factor receptor

PLCγ:

Phospholipase-Cγ

RAS:

Rat sarcoma

RAF:

Extracellular signal-regulated kinase

ERK:

Extracellular signal-regulated kinase

PI3K:

Phosphatidylinositol 3-kinase

AKT:

Ak strain transforming

OS:

Overall survival

DTC:

Differentiated thyroid cancer

RECIST 1.1:

Response Evaluation Criteria in Solid Tumors RECIST Version 1.1

RTKs:

Receptor tyrosine kinases

ETS-1:

E26 transformation-specific sequence 1

FGF:

Fibroblast growth factor

HBV:

Hepatitis C virus

MAPK:

Mitogen activated protein kinase

HGF:

Hepatocyte growth factor

c-MET:

C-mesenchymal-epithelial transition factor

NF1:

Neurofibromin 1

DUSP9:

Dual specificity phosphatase 9

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR-associated 9

FOXO3:

Forkhead box O3

gRNAs:

Guide RNAs

EGFR:

Epidermal growth factor receptor

IRF2:

Interferon regulatory factor 2

PHGDH:

Phosphoglycerate dehydrogenase

SSP:

Serine synthesis pathway

ROS:

Reactive oxygen species

α-KG:

α-Ketoglutarate

ITGB8:

Integrin subunit beta 8

EMT:

Epithelial–mesenchymal transition

ZEB1:

Zinc-finger E-box binding protein 1

CSCs:

Cancer stem cells

GSK3β:

Glycogen synthase kinase 3β

HNHA:

N-hydroxy-7-(2-naphthylthio) heptanomide

HSCs:

Hepatic stellate cells

ncRNAs:

Noncoding RNAs

sncRNAs:

Short ncRNAs

lncRNAs:

Long ncRNAs

miRNAs:

MicroRNAs

ceRNAs:

Competing endogenous RNAs

circRNAs:

Circular RNAs

circMED27:

CircRNA mediator complex subunit 27

USP28:

Ubiquitin-specific peptidase 28

pVEGFR 1–3:

Phosphorylated VEGFR 1–3

CGIs:

CpG islands

IGF1Rβ:

Insulin-like growth factor-1receptor β

HIF1α:

Hypoxia-inducible factor 1-α

HRE:

Hypoxia-responsive element

Pink-1:

PTEN-induced kinase-1

GSH:

Glutathione

P-gp:

P-glycoprotein

CRP:

C-reactive protein

AFP:

Alpha-fetoprotein

ORR:

Objective response rate

mPFS:

Median progression-free survival

Ang-2:

Angiopoietin-2

TME:

Tumor microenvironment

MDSCs:

Myeloid-derived suppressor cells

eMDSCs:

Early-stage MDSCs

PMN-MDSCs:

Polymorphonuclear MDSCs

M-MDSCs:

Mononuclear MDSCs

ATC:

Anaplastic thyroid cancer

PD-1:

Programmed death receptor-1

PAKs:

P21 activated kinases

XPO1:

Exportin 1

TEM:

Tie2-expressing macrophage

RCC:

Renal cell carcinoma

PTC:

Papillary thyroid cancer

Tregs:

Regulatory T-cells

IFN-γ:

Interferon-γ

MAIT:

Mucosal-associated invariant T cells

TNF:

Tumor necrosis factor

PFS:

Progression-free survival

FDA:

The US Food & Drug Administration

MSI-H/dMMR:

Microsatellite instability-high or mismatch repair-deficient

CNLC:

China liver cancer staging

TACE/HAIC:

Transarterial chemoembolization/Hepatic artery infusion chemotherapy

ICIs:

Immune check points inhibitors

USP22:

Ubiquitin-specific protease 22

PDX:

Patient-derived xenograft

PDO:

Patient-derived organoid

References

  1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65.

    Article  CAS  PubMed  Google Scholar 

  3. Lenvatinib approved for certain thyroid cancers, Cancer Discov 5(4) (2015) 338

  4. FDA approves drug combo for kidney cancer, Cancer Discov 6(7) (2016) 687–688.

  5. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73.

    Article  CAS  PubMed  Google Scholar 

  6. Lee C-H, Shah AY, Rasco D, Rao A, Taylor MH, Di Simone C, Hsieh JJ, Pinto A, Shaffer DR, Girones Sarrio R, Cohn AL, Vogelzang NJ, Bilen MA, Gunnestad Ribe S, Goksel M, Tennøe ØK, Richards D, Sweis RF, Courtright J, Heinrich D, Jain S, Wu J, Schmidt EV, Perini RF, Kubiak P, Okpara CE, Smith AD, Motzer RJ. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 2021;22(7):946–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Salama ZT, Syed YY, Scott LJ. Lenvatinib: a review in hepatocellular carcinoma. Drugs. 2019;79(6):665–74.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y, Zhang Y-N, Wang K-T, Chen L. Lenvatinib for hepatocellular carcinoma: from preclinical mechanisms to anti-cancer therapy. Biochim Biophys Acta. 2020;1874(1): 188391.

    CAS  Google Scholar 

  9. Kimura T, Kato Y, Ozawa Y, Kodama K, Ito J, Ichikawa K, Yamada K, Hori Y, Tabata K, Takase K, Matsui J, Funahashi Y, Nomoto K. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018;109(12):3993–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yi C, Chen L, Lin Z, Liu L, Shao W, Zhang R, Lin J, Zhang J, Zhu W, Jia H, Qin L, Lu L, Chen J. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC. Hepatology. 2021;74(5):2544–60.

    Article  CAS  PubMed  Google Scholar 

  11. Adachi Y, Kamiyama H, Ichikawa K, Fukushima S, Ozawa Y, Yamaguchi S, Goda S, Kimura T, Kodama K, Matsuki M, Miyano SW, Yokoi A, Kato Y, Funahashi Y. Inhibition of FGFR reactivates IFNγ signaling in tumor cells to enhance the combined antitumor activity of lenvatinib with anti-PD-1 antibodies. Cancer Res. 2022;82(2):292–306.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Liu H, Wang H, Lu M, Miao Y, Ding J, Li H, Gao X, Sun S, Zheng J. Lenvatinib promotes antitumor immunity by enhancing the tumor infiltration and activation of NK cells. Am J Cancer Res. 2019;9(7):1382–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, Matsuoka Y, Ghosh S, Kitano H, Nomoto K, Matsui J, Funahashi Y. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE. 2019;14(2): e0212513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuki M, Hoshi T, Yamamoto Y, Ikemori-Kawada M, Minoshima Y, Funahashi Y, Matsui J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018;7(6):2641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoshi T, Watanabe Miyano S, Watanabe H, Sonobe RMK, Seki Y, Ohta E, Nomoto K, Matsui J, Funahashi Y. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem Biophys Res Commun. 2019;513(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Deng H, Kan A, Lyu N, Mu L, Han Y, Liu L, Zhang Y, Duan Y, Liao S, Li S, Xie Q, Gao T, Li Y, Zhang Z, Zhao M. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver Cancer. 2020;9(3):338–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finn RS, Ikeda M, Zhu AX, Sung MW, Baron AD, Kudo M, Okusaka T, Kobayashi M, Kumada H, Kaneko S, Pracht M, Mamontov K, Meyer T, Kubota T, Dutcus CE, Saito K, Siegel AB, Dubrovsky L, Mody K, Llovet JM. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, Hutson TE, Kopyltsov E, Méndez-Vidal MJ, Kozlov V, Alyasova A, Hong S-H, Kapoor A, Alonso Gordoa T, Merchan JR, Winquist E, Maroto P, Goh JC, Kim M, Gurney H, Patel V, Peer A, Procopio G, Takagi T, Melichar B, Rolland F, De Giorgi U, Wong S, Bedke J, Schmidinger M, Dutcus CE, Smith AD, Dutta L, Mody K, Perini RF, Xing D, Choueiri TK. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300.

    Article  CAS  PubMed  Google Scholar 

  19. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, Jassem J, Zolnierek J, Maroto JP, Mellado B, Melichar B, Tomasek J, Kremer A, Kim H-J, Wood K, Dutcus C, Larkin J. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.

    Article  CAS  PubMed  Google Scholar 

  20. Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochem Biophys Acta. 2017;1868(2):564–70.

    CAS  Google Scholar 

  21. Khan HY, Ge J, Nagasaka M, Aboukameel A, Mpilla G, Muqbil I, Szlaczky M, Chaker M, Baloglu E, Landesman Y, Mohammad RM, Azmi AS, Sukari A. Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer cells: putative implications for overcoming lenvatinib therapy resistance. Int J Mol Sci. 2019;21:1.

    Article  Google Scholar 

  22. Fu R, Jiang S, Li J, Chen H, Zhang X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Med Oncol. 2020;37:4.

    Google Scholar 

  23. Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, Minoshima Y, Iwata M, Funahashi Y. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014: 638747.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 2021;85:123.

    Article  PubMed  Google Scholar 

  26. Jin H, Shi Y, Lv Y, Yuan S, Ramirez CFA, Lieftink C, Wang L, Wang S, Wang C, Dias MH, Jochems F, Yang Y, Bosma A, Hijmans EM, de Groot MHP, Vegna S, Cui D, Zhou Y, Ling J, Wang H, Guo Y, Zheng X, Isima N, Wu H, Sun C, Beijersbergen RL, Akkari L, Zhou W, Zhai B, Qin W, Bernards R. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595(7869):730–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhao Z, Zhang D, Wu F, Tu J, Song J, Xu M, Ji J. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression. J Cell Mol Med. 2021;25(1):549–60.

    Article  CAS  PubMed  Google Scholar 

  28. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Z, Song J, Zhang D, Wu F, Tu J, Ji J. Oxysophocarpine suppresses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib. Life Sci. 2021;264: 118642.

    Article  CAS  PubMed  Google Scholar 

  30. Scartozzi M, Faloppi L, SvegliatiBaroni G, Loretelli C, Piscaglia F, Iavarone M, Toniutto P, Fava G, De Minicis S, Mandolesi A, Bianconi M, Giampieri R, Granito A, Facchetti F, Bitetto D, Marinelli S, Venerandi L, Vavassori S, Gemini S, D’Errico A, Colombo M, Bolondi L, Bearzi I, Benedetti A, Cascinu S. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study. Int J Cancer. 2014;135(5):1247–56.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng Y-B, Zhan M-X, Zhao W, Liu B, Huang J-W, He X, Fu S-R, Zhao Y, Li Y, Hu B-S, Lu L-G. The relationship of kinase insert domain receptor gene polymorphisms and clinical outcome in advanced hepatocellular carcinoma patients treated with sorafenib. Med Oncol. 2014;31(10):209.

    Article  PubMed  Google Scholar 

  32. Hu Q, Hu X, Zhang L, Zhao Y, Li L. Targeting Hedgehog signalling in CD133-positive hepatocellular carcinoma: improving Lenvatinib therapeutic efficiency. Med Oncol. 2021;38(4):41.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Aleksandrowicz E, Schönsiegel F, Gröner D, Bauer N, Nwaeburu CC, Zhao Z, Gladkich J, Hoppe-Tichy T, Yefenof E, Hackert T, Strobel O, Herr I. Dexamethasone mediates pancreatic cancer progression by glucocorticoid receptor, TGFβ and JNK/AP-1. Cell Death Dis. 2017;8(10): e3064.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yao CD, Haensel D, Gaddam S, Patel T, Atwood SX, Sarin KY, Whitson RJ, McKellar S, Shankar G, Aasi S, Rieger K, Oro AE. AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun. 2020;11(1):5079.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 2021;22:20.

    Article  Google Scholar 

  36. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murali I, Kasar S, Naeem A, Tyekucheva S, Khalsa JK, Thrash EM, Itchaki G, Livitz D, Leshchiner I, Dong S, Fernandes SM, Getz G, Johnson A, Brown JR. Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia. Blood. 2021;138(1):44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu Y, Shen H, Huang W, He S, Chen J, Zhang D, Shen Y, Sun Y. Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov. 2021;7(1):359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hou W, Bridgeman B, Malnassy G, Ding X, Cotler SJ, Dhanarajan A, Qiu W. Integrin subunit beta 8 contributes to lenvatinib resistance in HCC. Hepatol Commun. 2022;1:1.

    Google Scholar 

  40. Yi Y, Wu H, Gao Q, He H-W, Li Y-W, Cai X-Y, Wang J-X, Zhou J, Cheng Y-F, Jin J-J, Fan J, Qiu S-J. Interferon regulatory factor (IRF)-1 and IRF-2 are associated with prognosis and tumor invasion in HCC. Ann Surg Oncol. 2013;20(1):267–76.

    Article  PubMed  Google Scholar 

  41. Guo Y, Xu J, Du Q, Yan Y, Geller DA. IRF2 regulates cellular survival and Lenvatinib-sensitivity of hepatocellular carcinoma (HCC) through regulating beta-catenin. Transl Oncol. 2021;14(6): 101059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei L, Lee D, Law CT, Zhang MS, Shen J, Chin DW, Zhang A, Tsang FH, Wong CL, Ng IO, Wong CC, Wong CM. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10(1):4681.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Su C-Y, Li J-Q, Zhang L-L, Wang H, Wang F-H, Tao Y-W, Wang Y-Q, Guo Q-R, Li J-J, Liu Y, Yan Y-Y, Zhang J-Y. The biological functions and clinical applications of integrins in cancers. Front Pharmacol. 2020;11: 579068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim SY, Kim SM, Chang HJ, Kim BW, Lee YS, Park CS, Park KC, Chang HS. SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with alternating Sorafenib and Lenvatinib for refractory thyroid cancer. BMC Cancer. 2018;18(1):956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee YS, Kim SM, Kim BW, Chang HJ, Kim SY, Park CS, Park KC, Chang HS. Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia. 2018;20(2):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grünert S. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002;156(2):299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.

    Article  CAS  PubMed  Google Scholar 

  51. Ma XL, Hu B, Tang WG, Xie SH, Ren N, Guo L, Lu RQ. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki H, Maruyama R, Yamamoto E, Niinuma T, Kai M. Relationship between noncoding RNA dysregulation and epigenetic mechanisms in cancer. Adv Exp Med Biol. 2016;927:109–35.

    Article  CAS  PubMed  Google Scholar 

  53. Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer. 2020;19(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 2019;18(1):147.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yu T, Yu J, Lu L, Zhang Y, Zhou Y, Zhou Y, Huang F, Sun L, Guo Z, Hou G, Dong Z, Wang B. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis. Cell Oncol (Dordr). 2021;44(4):821–34.

    Article  CAS  PubMed  Google Scholar 

  56. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:2.

    Article  Google Scholar 

  57. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Zhang P, Sun H, Wen P, Wang Y, Cui Y, Wu J. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Ther Nucleic Acids. 2022;27:293–303.

    Article  PubMed  Google Scholar 

  59. Arechederra M, Bazai SK, Abdouni A, Sequera C, Mead TJ, Richelme S, Daian F, Audebert S, Dono R, Lozano A, Gregoire D, Hibner U, Allende DS, Apte SS, Maina F. ADAMTSL5 is an epigenetically activated gene underlying tumorigenesis and drug resistance in hepatocellular carcinoma. J Hepatol. 2021;74(4):893–906.

    Article  CAS  PubMed  Google Scholar 

  60. Huang S, Zhu P, Sun B, Guo J, Zhou H, Shu Y, Li Q. Modulation of YrdC promotes hepatocellular carcinoma progression via MEK/ERK signaling pathway. Biomed Pharmacother. 2019;114: 108859.

    Article  CAS  PubMed  Google Scholar 

  61. Guo J, Zhu P, Ye Z, Wang M, Yang H, Huang S, Shu Y, Zhang W, Zhou H, Li Q. YRDC mediates the resistance of lenvatinib in hepatocarcinoma cells via modulating the translation of KRAS. Front Pharmacol. 2021;12: 744578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201.

    Article  CAS  PubMed  Google Scholar 

  63. Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guan Y, Wang Y, Li B, Shen K, Li Q, Ni Y, Huang L. Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics. Cancer Cell Int. 2021;21(1):350.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, Chen J, Zhang J. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 2021;14(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab. 2015;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ, Zuhowski EG, Cullen KJ. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res. 2003;63(2):312–8.

    CAS  PubMed  Google Scholar 

  68. Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83(8):1005–12.

    Article  CAS  PubMed  Google Scholar 

  69. Shumaker RC, Aluri J, Fan J, Martinez G, Thompson GA, Ren M. Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults. Clin Drug Investig. 2014;34(9):651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei G, Huang L, Jiang Y, Shen Y, Huang Z, Huang Y, Sun X, Zhao C. Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion. Eur J Med Chem. 2019;169:53–64.

    Article  CAS  PubMed  Google Scholar 

  71. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179(5):1033–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang P, Sun H, Wen P, Wang Y, Cui Y, Wu J. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Therapy. 2022;27:293–303.

    Google Scholar 

  73. Hayashi T, Shibata M, Oe S, Miyagawa K, Honma Y, Harada M. C-reactive protein can predict dose intensity, time to treatment failure and overall survival in HCC treated with lenvatinib. PLoS ONE. 2020;15(12): e0244370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu B, Shang X, Shi J-Y, Cui G-Z, Li X, Wang N-Y. Early alpha-fetoprotein response is associated with survival in patients with HBV-related hepatocellular carcinoma receiving lenvatinib. Front Oncol. 2022;12: 807189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Myojin Y, Kodama T, Maesaka K, Motooka D, Sato Y, Tanaka S, Abe Y, Ohkawa K, Mita E, Hayashi Y, Hikita H, Sakamori R, Tatsumi T, Taguchi A, Eguchi H, Takehara T. ST6GAL1 is a novel serum biomarker for lenvatinib-susceptible FGF19-driven hepatocellular carcinoma. Clin Cancer Res. 2021;27(4):1150–61.

    Article  CAS  PubMed  Google Scholar 

  76. Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, Park W, Kang TW, Baek GO, Yoon MG, Son JA, Weon JH, Kim SS, Cho HJ, Cheong JY. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (Lond). 2023;43(4):455–79.

    Article  PubMed  Google Scholar 

  77. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, Baron A, Park J-W, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng A-L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet (London, England). 2018;391(10126):1163–73.

    Article  CAS  PubMed  Google Scholar 

  78. Raja A, Park I, Haq F, Ahn S-M. FGF19-signaling in hepatocellular carcinoma. Cells. 2019;8:6.

    Article  Google Scholar 

  79. Yamauchi M, Ono A, Ishikawa A, Kodama K, Uchikawa S, Hatooka H, Zhang P, Teraoka Y, Morio K, Fujino H, Nakahara T, Murakami E, Miki D, Kawaoka T, Tsuge M, Hiramatsu A, Imamura M, Hayes CN, Fujita M, Nakagawa H, Yasui W, Aikata H, Chayama K. Tumor fibroblast growth factor receptor 4 level predicts the efficacy of lenvatinib in patients with advanced hepatocellular carcinoma. Clin Transl Gastroenterol. 2020;11(5): e00179.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chuma M, Uojima H, Numata K, Hidaka H, Toyoda H, Hiraoka A, Tada T, Hirose S, Atsukawa M, Itokawa N, Arai T, Kako M, Nakazawa T, Wada N, Iwasaki S, Miura Y, Hishiki S, Nishigori S, Morimoto M, Hattori N, Ogushi K, Nozaki A, Fukuda H, Kagawa T, Michitaka K, Kumada T, Maeda S. Early changes in circulating FGF19 and Ang-2 levels as possible predictive biomarkers of clinical response to lenvatinib therapy in hepatocellular carcinoma. Cancers. 2020;12:2.

    Article  Google Scholar 

  81. Finn RS, Kudo M, Cheng A-L, Wyrwicz L, Ngan RKC, Blanc J-F, Baron AD, Vogel A, Ikeda M, Piscaglia F, Han K-H, Qin S, Minoshima Y, Kanekiyo M, Ren M, Dairiki R, Tamai T, Dutcus CE, Ikezawa H, Funahashi Y, Evans TRJ. Pharmacodynamic biomarkers predictive of survival benefit with lenvatinib in unresectable hepatocellular carcinoma: from the phase III REFLECT study. Clin Cancer Res. 2021;27(17):4848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  83. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, Freeman GJ, Alessandrini A, Parangi S. Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 2019;144(9):2266–78.

    Article  CAS  PubMed  Google Scholar 

  85. L. Torrens, C. Montironi, M. Puigvehí, A. Mesropian, J. Leslie, P.K. Haber, M. Maeda, U. Balaseviciute, C.E. Willoughby, J. Abril-Fornaguera, M. Piqué-Gili, M. Torres-Martín, J. Peix, D. Geh, E. Ramon-Gil, B. Saberi, S.L. Friedman, D.A. Mann, D. Sia, J.M. Llovet, Immunomodulatory Effects of Lenvatinib Plus Anti-Programmed Cell Death Protein 1 in Mice and Rationale for Patient Enrichment in Hepatocellular Carcinoma, Hepatology (Baltimore, Md.) 74(5) (2021) 2652–2669.

  86. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, De Toni EN, Wang X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer. 2017;1868(2):564–70.

    Article  CAS  PubMed  Google Scholar 

  88. Nakagawa T, Matsushima T, Kawano S, Nakazawa Y, Kato Y, Adachi Y, Abe T, Semba T, Yokoi A, Matsui J, Tsuruoka A, Funahashi Y. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor. Cancer Sci. 2014;105(6):723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakazawa Y, Kawano S, Matsui J, Funahashi Y, Tohyama O, Muto H, Nakagawa T, Matsushima T. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci. 2015;106(2):201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, Weiner DM, Schimel D, England K, Martin JD, Gao X, Xu L, Barry CE, Jain RK. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A. 2015;112(6):1827–32.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  92. Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 2010;70(13):5270–80.

    Article  CAS  PubMed  Google Scholar 

  93. Jacob A, Shook J, Hutson T. The implementation of lenvatinib/everolimus or lenvatinib/pembrolizumab combinations in the treatment of metastatic renal cell carcinoma. Expert Rev Anticancer Ther. 2021;21(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  94. Tomonari T, Sato Y, Tanaka H, Tanaka T, Taniguchi T, Sogabe M, Okamoto K, Miyamoto H, Muguruma N, Takayama T. Sorafenib as second-line treatment option after failure of lenvatinib in patients with unresectable hepatocellular carcinoma. JGH Open. 2020;4(6):1135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tomonari T, Sato Y, Tanaka H, Tanaka T, Fujino Y, Mitsui Y, Hirao A, Taniguchi T, Okamoto K, Sogabe M, Miyamoto H, Muguruma N, Kagiwada H, Kitazawa M, Fukui K, Horimoto K, Takayama T. Potential use of lenvatinib for patients with unresectable hepatocellular carcinoma including after treatment with sorafenib: real-world evidence and assessment via protein phosphorylation array. Oncotarget. 2020;11(26):2531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Terashima T, Yamashita T, Takata N, Takeda Y, Kido H, Iida N, Kitahara M, Shimakami T, Takatori H, Arai K, Kawaguchi K, Kitamura K, Yamashita T, Sakai Y, Mizukoshi E, Honda M, Kaneko S. Safety and efficacy of sorafenib followed by regorafenib or lenvatinib in patients with hepatocellular carcinoma. Hepatol Res. 2021;51(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  97. Hiraoka A, Kumada T, Atsukawa M, Hirooka M, Tsuji K, Ishikawa T, Takaguchi K, Kariyama K, Itobayashi E, Tajiri K, Shimada N, Shibata H, Ochi H, Tada T, Toyoda H, Nouso K, Tsutsui A, Nagano T, Itokawa N, Hayama K, Imai M, Joko K, Koizumi Y, Hiasa Y, Michitaka K, Kudo M. Prognostic factor of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions-multicenter analysis. Cancer Med. 2019;8(8):3719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xing R, Gao J, Cui Q, Wang Q. Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma. Front Immunol. 2021;12: 783236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou C, Sun B-Y, Zhou P-Y, Yang Z-F, Wang Z-T, Liu G, Gan W, Wang Z, Zhou J, Fan J, Yi Y, Ren N, Qiu S-J. MAIT cells confer resistance to Lenvatinib plus anti-PD1 antibodies in hepatocellular carcinoma through TNF-TNFRSF1B pathway. Clin Immunol. 2023;256: 109770.

    Article  CAS  PubMed  Google Scholar 

  100. Kim S-M, Park K-C, Jeon J-Y, Kim B-W, Kim H-K, Chang H-J, Choi S-H, Park C-S, Chang H-S. Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer. BMC Cancer. 2015;15:1003.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hou F-J, Guo L-X, Zheng K-Y, Song J-N, Wang Q, Zheng Y-G. Chelidonine enhances the antitumor effect of lenvatinib on hepatocellular carcinoma cells. Onco Targets Ther. 2019;12:6685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu Q, Li Q, Yang Z, Huang P, Hu H, Mo Z, Qin Z, Xu Z, Chen T, Yang S. Lenvatinib and Cu2-xS nanocrystals co-encapsulated in poly(D,L-lactide-co-glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. J Mater Chem B. 2021;9(48):9908–22.

    Article  CAS  PubMed  Google Scholar 

  103. Xu Q, Hu H, Mo Z, Chen T, He Q, Xu Z. A multifunctional nanotheranostic agent based on Lenvatinib for multimodal synergistic hepatocellular carcinoma therapy with remarkably enhanced efficacy. J Colloid Interface Sci. 2023;638:375–91.

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Zhang D, Jiang C, Zheng X, Lin Z, Zhuang Q, Xie H, Liang Y, Xu Y, Cui L, Liu X, Zeng Y. Normalization of tumor vessels by lenvatinib-based metallo-nanodrugs alleviates hypoxia and enhances calreticulin-mediated immune responses in orthotopic HCC and organoids. Small. 2023;19(29): e2207786.

    Article  PubMed  Google Scholar 

  105. Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett. 2023;558: 216106.

    Article  CAS  PubMed  Google Scholar 

  106. Luo Y, Wang J, Xu L, Du Q, Fang N, Wu H, Liu F, Hu L, Xu J, Hou J, Zhong Y, Liu Y, Wang Z, Ran H, Guo D. A theranostic metallodrug modulates immunovascular crosstalk to combat immunosuppressive liver cancer. Acta Biomater. 2022;154:478–96.

    Article  CAS  PubMed  Google Scholar 

  107. Makker V, Rasco D, Vogelzang NJ, Brose MS, Cohn AL, Mier J, Di Simone C, Hyman DM, Stepan DE, Dutcus CE, Schmidt EV, Guo M, Sachdev P, Shumaker R, Aghajanian C, Taylor M. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):711–8.

    Article  CAS  PubMed  Google Scholar 

  108. Makker V, Colombo N, Casado Herráez A, Santin AD, Colomba E, Miller DS, Fujiwara K, Pignata S, Baron-Hay S, Ray-Coquard I, Shapira-Frommer R, Ushijima K, Sakata J, Yonemori K, Kim YM, Guerra EM, Sanli UA, McCormack MM, Smith AD, Keefe S, Bird S, Dutta L, Orlowski RJ, Lorusso D. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386(5):437–48.

    Article  CAS  PubMed  Google Scholar 

  109. Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, Wakabayashi M, Nomura S, Mikamoto Y, Shima H, Fujishiro N, Higuchi T, Sato A, Kuwata T, Shitara K. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020;21(8):1057–65.

    Article  CAS  PubMed  Google Scholar 

  110. Gaspar N, Venkatramani R, Hecker-Nolting S, Melcon SG, Locatelli F, Bautista F, Longhi A, Lervat C, Entz-Werle N, Casanova M, Aerts I, Strauss SJ, Thebaud E, Morland B, Nieto AC, Marec-Berard P, Gambart M, Rossig C, Okpara CE, He C, Dutta L, Campbell-Hewson Q. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 2021;22(9):1312–21.

    Article  CAS  PubMed  Google Scholar 

  111. Llovet JM, Kudo M, Merle P, Meyer T, Qin S, Ikeda M, Xu R, Edeline J, Ryoo B-Y, Ren Z, Masi G, Kwiatkowski M, Lim HY, Kim JH, Breder V, Kumada H, Cheng A-L, Galle PR, Kaneko S, Wang A, Mody K, Dutcus C, Dubrovsky L, Siegel AB, Finn RS. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2023;24(12):1399–410.

    Article  CAS  PubMed  Google Scholar 

  112. Bedke J, Albiges L, Capitanio U, Giles RH, Hora M, Lam TB, Ljungberg B, Marconi L, Klatte T, Volpe A, Abu-Ghanem Y, Dabestani S, Pello SF, Hofmann F, Kuusk T, Tahbaz R, Powles T, Bex A. The 2021 updated European association of urology guidelines on renal cell carcinoma: immune checkpoint inhibitor-based combination therapies for treatment-naive metastatic clear-cell renal cell carcinoma are standard of care. Eur Urol. 2021;80(4):393–7.

    Article  PubMed  Google Scholar 

  113. Makker V, Colombo N, Herráez AC, Monk BJ, Mackay H, Santin AD, Miller DS, Moore RG, Baron-Hay S, Ray-Coquard I, Ushijima K, Yonemori K, Kim YM, Guerra Alia EM, Sanli UA, Bird S, Orlowski R, McKenzie J, Okpara C, Barresi G, Lorusso D. Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. J Clin Oncol. 2023;41(16):2904–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. NIH, ClinicalTrials.gov. https://clinicaltrials.gov/ct2/home.

  115. You Q. Supplementary files: a summary about ongoing clinical trials of lenvatinib in combination with different drugs/therapeutic methods. Mendeley Data V1. 2023. https://doi.org/10.17632/5c4b8f8yxh.1.

    Article  Google Scholar 

  116. Cannarile MA, Gomes B, Canamero M, Reis B, Byrd A, Charo J, Yadav M, Karanikas V. Biomarker technologies to support early clinical immuno-oncology development: advances and interpretation. Clin Cancer Res. 2021;27(15):4147–59.

    Article  CAS  PubMed  Google Scholar 

  117. Huang A, Yang X-R, Chung W-Y, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5(1):146.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Bioengineering Research Center Cultivation Platform (WW201905), the National Natural Science Foundation of China (81900597, 81802897, 81901943, 81770648, 81970567), the Science and Technology Program of Guangdong Province (2019B020236003), the Science and Technology Program of Guangzhou City (201803040005), the Natural Science Foundation of Guangdong Province (2019A1515011698, 2021A1515012136, 2021A1515011156, 2021A1515010571), the Guangdong Basic and Applied Basic Research Foundation (2021A1515111058), the Guangzhou Basic and Applied Basic Research Foundation (202102020237), the Major talent project cultivation plan project (P02093).

Author information

Authors and Affiliations

Authors

Contributions

QY and RL carried out the literature searches, prepared figures and tables, did writing and editing; JY and YCZ did writing and editing; QY, JYC, XS, CCX, JBZ, JQX, and HTC did the literature searches and data interpretation; YY and JZ conceptualized the paper, did writing and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Zheng or Yang Yang.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Li, R., Yao, J. et al. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 41, 75 (2024). https://doi.org/10.1007/s12032-023-02295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02295-0

Keywords

Navigation