Skip to main content
Log in

Production of Metamaterial-Based Radar Absorbing Material for Stealth Technology

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, production of metamaterial-based polymer matrix composites was carried out for radar absorbing material. Metamaterial-based absorbers can be used in the stealth technology due to their negative index of refraction, broadband electromagnetic absorption. Electromagnetic metamaterials show negative magnetic permeability and electric permittivity. Splits on the loops (rings) can create high capacitances and can decrease the resonance frequency. Usually, split-ring loops are fabricated by coating thin conductive and nonmagnetic copper paths on a thin polymer. Thick carbon nanotube split-ring loops are embedded into polymer matrix instead of coating. This can have high radar absorption capacity, low density, and high strength. Positive moulds were fabricated by additive manufacturing. Replica method was used for the fabrication of metamaterial-based composites. Absorbance, conductivity, and mechanical properties were investigated. Distribution of the iron powders is uniform in the matrix. Increasing iron powder content increased the Young’s modulus of the composites. Iron addition increased the hardness and slightly decreased the impact energy. Increasing carbon nanotube content of the matrix increased the hardness and impact energy. Increasing carbon nanotube contents increased the insertion loss and absorbance. Maximum absorbance and insertion loss values were in the circular split-ring design. Insertion loss and absorbance values of the re-entrant and star shaped designs were lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. H. Ahmad, A. Tariq, A. Shehzad, M.S. Faheem, M. Shafiq, I.A. Rashid, A. Afzal, A. Munir, M.T. Riaz, H.T. Haider, A. Afzal, M.B. Qadir, Z. Khaliq, Polym. Compos. 40, 4457–4472 (2019)

    Article  CAS  Google Scholar 

  2. C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, J. Appl. Polym. Sci. 136(14), 47241 (2019)

    Article  Google Scholar 

  3. A. Ashraf, M. Tariq, K. Naveed, A. Kausar, Z. Iqbal, Z.M. Khan, L.A. Khan, Polym Eng Sci. 54, 2509–2514 (2014)

    Article  Google Scholar 

  4. W. Fan, D. Li, J. Li, J. Li, L. Yuan, L. Xue, R. Sun, J. Meng, Text. Res. J. 88(20), 2353–2361 (2018)

    Article  CAS  Google Scholar 

  5. Y. Quing, W. Zhou, F. Luo, D. Zhu, J. Magn. Magn. Mater. 321, 25–28 (2009)

    Article  ADS  Google Scholar 

  6. A.R. Bueno, M.L. Gregori, M.C.S. Nobrega, J. Magn. Magn. Mater. 320, 864–870 (2008)

    Article  CAS  ADS  Google Scholar 

  7. A. Kausar, I. Rafique, B. Muhammad, Polymer-Plastics and Engineering 55(11), 1167–1191 (2016)

    Article  CAS  Google Scholar 

  8. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  ADS  Google Scholar 

  9. N.E. Kamchi, B. Balaabed, J.L. Wojkiewicz, S. Lamouri, T. Lasr, J. Appl. Polym. Sci. 127(6), 4426–4432 (2013)

    Article  CAS  Google Scholar 

  10. J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R 74, 211–232 (2013)

    Article  Google Scholar 

  11. A. Kolanowska, D. Janas, A.P. Herman, R. Je, G. Jedrysiak, T. Gizewski, S. Boncel, Carbon 126, 31–52 (2018)

    Article  CAS  Google Scholar 

  12. K. Ozden, O.M. Yucedag, H. Kocer, Int. J. Electron. Commun. (AEU) 70, 1062–1070 (2016)

    Article  Google Scholar 

  13. Z. Yang, X. Sun, J. Tian, H. Li, H. Yu, H. Wang, M. Zhou, Q. Huang, J. Mater. Sci. Mater. Electron. 31, 13838–13844 (2020)

    Article  CAS  Google Scholar 

  14. T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4, 1727–1735 (2016)

    Article  CAS  Google Scholar 

  15. X. Chen, Z. Wu, Z. Zhang, Y. Zou, Physica E 120, 114017 (2020)

    Article  CAS  Google Scholar 

  16. S.S. Yao, F.L. Jin, K.Y. Rhee, D. Hui, S.J. Park, Compos. B 142, 241–250 (2018)

    Article  CAS  Google Scholar 

  17. P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, J. Gu, Compos. Sci. Technol. 181, 107698 (2019)

    Article  CAS  Google Scholar 

  18. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Polym. Rev. 59(2), 280–337 (2019)

    Article  CAS  Google Scholar 

  19. M. Gagne, D. Therriault, Prog. Aerosp. Sci. 64, 1–16 (2014)

    Article  Google Scholar 

  20. R. Yadav, M. Tirumali, X. Wang, M. Naebe, B. Kandasubramanian, Defence Technology 16, 107–118 (2020)

    Article  Google Scholar 

  21. J.H. Hoon Oh, K.S. Oh, C.G. Kim, C.S. Hong, Composites Part B 35(1), 49–56 (2004)

    Article  Google Scholar 

  22. W.S. Chin, D.G. Lee, Compos. Struct. 77, 457–465 (2007)

    Article  Google Scholar 

  23. C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, D. Fang, Compos. B 123, 19–27 (2017)

    Article  Google Scholar 

  24. T.J. Cui, D.R. Smith, R. Liu, Metamaterials (Theory, Design and Applications, Springer, New York, USA, 2010). (ISBN: 978-1-4419-0572-7)

    Book  Google Scholar 

  25. T. Frenzel, M. Kadic, M. Wegener, Science 358, 1072–1074 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  26. J.W. Jiang, H.S. Park, Nat. Commun. 5(4727), 1–7 (2014)

    Google Scholar 

  27. H.M.A. Kolken, A.A. Zadpoor, RSC Adv. 7, 5111–5129 (2017)

    Article  CAS  ADS  Google Scholar 

  28. T.C. Lim, Auxetic Materials and Structures (Springer, Singapore, 2015)

    Book  Google Scholar 

  29. Y. Park, G. Vella, K.J. Loh, Nature 9, 18609 (2019)

    CAS  Google Scholar 

  30. X. Ren, R. Das, P. Tran, T.D. Ngo, Y.M. Xie, Smart Mater. Struct. 27(023001), 1–38 (2018)

    CAS  Google Scholar 

  31. A.A. Zadpoor, Int. J. Mol. Sci. 18, 1607 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. X. Zhang, F. Yan, X. Du, W. Wang, M. Zhang, AIP Advances 10(5), 055211 (2020)

    Article  CAS  ADS  Google Scholar 

  33. V. Joy, A. Dileep, P.V. Abhilash, R.U. Nair, H. Singh, J. Electron. Mater. 50, 3129–3148 (2021)

    Article  CAS  ADS  Google Scholar 

  34. C.M. Watts, X. Liu, J.W. Padilla, Advanced Materials. 24(3), OP98–OP120 (2012)

    CAS  PubMed  Google Scholar 

  35. B. Ma, S. Liu, B. Bian, X. Kong, H. Zhang, Z. Mao, B. Wang, J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014)

    Article  ADS  Google Scholar 

  36. S. Li, H. Huang, S. Wu, J. Wang, H. Lu, L. Xing, Polymers 14, 1424 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa, Project Numbers of 36194 and 36358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilven Mutlu.

Ethics declarations

Conflict of Interest

The authors declare that they have no any conflict of interest. The authors certify that they have no affiliations with any organization with financial interest. This is an original work and it has not been submitted to any other journal for review. The article has been written by the stated authors who are all aware of its content and approve its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenilmez, F., Mutlu, I. Production of Metamaterial-Based Radar Absorbing Material for Stealth Technology. Braz J Phys 54, 60 (2024). https://doi.org/10.1007/s13538-024-01436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01436-8

Keywords

Navigation