Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2024

Isopointal intermetallics: the cP24, dca phases as a representative set of examples, along with their vacancy-ordered variants β-Mn and SrSi2

  • Oliver Janka EMAIL logo and Rainer Pöttgen EMAIL logo

Abstract

The crystal-chemical relationship of the cubic Laves phase MgCu2 (space group F d 3 m, cF24) with the ternary phases Cd2Cu3In, Na2Au3Al, Mg2Rh3P, Li2Pd3B, Ag2Pd3S, Cu3Pt2B, Mo3Al2C, Mo3Ni2N, and V3Ga2N (subgroup P4132, cP24, dca) is discussed based on a group-subgroup scheme. The course of the lattice parameters and the free positional parameters show substantially different distortions and thus clear differences in chemical bonding, classifying these phases as isopointal rather than isotypic (usually they are all assigned to the Mo3Al2C type). The group-subgroup scheme further shows that the β-Mn and SrSi2 structures are vacancy-ordered variants of the cP24, dca phases. The structures of Mn3IrSi and LaIrSi (space group types P213; translationengleiche subgroups) are their ternary ordered versions.


Corresponding authors: Oliver Janka, Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4 1, 66123 Saarbrücken, Germany, E-mail: ; and Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Both authors accept responsibility for the entire content of this manuscript and have approved its submission.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster and Universität des Saarlandes.

  5. Data availability: All data is available within the manuscript.

References

1. Villars, P., Cenzual, K. Pearsonʼs Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

2. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183.10.1107/S0108767384000416Search in Google Scholar

3. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar

4. Paufler, P., Just, G. Z. Kristallogr. 1996, 211, 777–793.10.1524/zkri.1996.211.11.777Search in Google Scholar

5. Bergerhoff, G., Berndt, M., Brandenburg, K., Degen, T. Acta Crystallogr. 1999, B55, 147–156.10.1107/S0108768198010969Search in Google Scholar

6. Allmann, R., Hinek, R. Acta Crystallogr. 2007, 63A, 412–417.10.1107/S0108767307038081Search in Google Scholar

7. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262.10.1515/znb-2021-0022Search in Google Scholar

8. Burdett, J. K., Lee, S., McLarnan, T. J. J. Am. Chem. Soc. 1985, 107, 3083–3089; https://doi.org/10.1021/ja00297a012.Search in Google Scholar

9. Miller, G. J. Eur. J. Inorg. Chem. 1998, 523–536.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSearch in Google Scholar

10. Miller, G. J. Z. Anorg. Allg. Chem. 2006, 632, 2078; https://doi.org/10.1002/zaac.200670006.Search in Google Scholar

11. Han, M.-K., Miller, G. J. Inorg. Chem. 2008, 47, 515–528; https://doi.org/10.1021/ic701311b.Search in Google Scholar

12. Gzyl, A. S., Oliynyk, A. O., Adutwum, L. A., Mar, A. Inorg. Chem. 2019, 58, 9280–9289; https://doi.org/10.1021/acs.inorgchem.9b00987.Search in Google Scholar PubMed

13. Jensen, T. R., Toft, B. Graph Coloring Problems; John Wiley & Sons: New York, 1995.10.1002/9781118032497Search in Google Scholar

14. Jensen, W. B. J. Chem. Ed. 1995, 72, 395–398; https://doi.org/10.1021/ed072p395.Search in Google Scholar

15. Hoffmann, R., Zheng, C. J. Phys. Chem. 1985, 89, 4175–4181; https://doi.org/10.1021/j100266a007.Search in Google Scholar

16. Johrendt, D., Felser, C., Jepsen, O., Andersen, O. K., Mewis, A., Rouxel, J. J. Solid State Chem. 1997, 130, 254–265; https://doi.org/10.1006/jssc.1997.7300.Search in Google Scholar

17. Jeitschko, W., Nowotny, H., Benesovsky, F. Monatsh. Chem. 1963, 94, 247–251.10.1007/BF00900244Search in Google Scholar

18. Johnston, J., Toth, L., Kennedy, K., Parker, E. R. Solid State Commun. 1964, 2, 123; https://doi.org/10.1016/0038-1098(64)90251-0.Search in Google Scholar

19. Bauer, E., Rogl, G., Chen, X.-Q., Khan, R. T., Michor, H., Hilscher, G., Royanian, E., Kumagai, K., Li, D. Z., Li, Y. Y., Podloucky, R., Rogl, P. Phys. Rev. B 2010, 82, 064511; https://doi.org/10.1103/physrevb.82.064511.Search in Google Scholar

20. Misra, S., Koley, B., Mahato, S., Wang, F., Jana, P. P. J. Alloys Compd. 2020, 844, 156054, https://doi.org/10.1016/j.jallcom.2020.156054.Search in Google Scholar

21. Stegemann, F., Benndorf, C., Zhang, Y., Bartsch, M., Zacharias, H., Fokwa, B. P. T., Eckert, H., Janka, O. Inorg. Chem. 2017, 56, 1919–1931; https://doi.org/10.1021/acs.inorgchem.6b02480.Search in Google Scholar PubMed

22. Iyo, A., Hase, I., Fujihisa, H., Gotoh, Y., Takeshita, N., Ishida, S., Ninomiya, H., Yoshida, Y., Eisaki, H., Kawashima, K. Phys. Rev. Mater. 2019, 3, 124802.10.1103/PhysRevMaterials.3.124802Search in Google Scholar

23. Eibenstein, U., Jung, W. J. Solid State Chem. 1997, 133, 21–24; https://doi.org/10.1006/jssc.1997.7310.Search in Google Scholar

24. Raub, E., Wullhorst, B., Plate, W. Z. Metallkd. 1954, 9, 533–537.Search in Google Scholar

25. Salamakha, L. P., Sologub, O., Stöger, B., Michor, H., Bauer, E., Rogl, P. F. J. Solid State Chem. 2015, 229, 303–309; https://doi.org/10.1016/j.jssc.2015.06.004.Search in Google Scholar

26. Prior, T. J., Battle, P. D. J. Solid State Chem. 2003, 172, 138–147; https://doi.org/10.1016/s0022-4596(02)00171-8.Search in Google Scholar

27. Jeitschko, W., Nowotny, H., Benesovsky, F. Monatsh. Chem. 1964, 95, 1212–1218; https://doi.org/10.1007/bf00904716.Search in Google Scholar

28. Walters, F. M.Jr., Wells, C. Trans. Am. Soc. Met. 1935, 23, 727–750.Search in Google Scholar

29. Shoemaker, C. B., Shoemaker, D. P., Hopkins, T. E., Yindepit, S. Acta Crystallogr. 1978, 34B, 3573–3576.10.1107/S0567740878011620Search in Google Scholar

30. Xie, W., Thimmaiah, S., Lamsal, J., Liu, J., Heitmann, T. W., Quirinale, D., Goldman, A. I., Pecharsky, V., Miller, G. J. Inorg. Chem. 2013, 52, 9399–9408; https://doi.org/10.1021/ic4009653.Search in Google Scholar PubMed

31. Pöttgen, R., Hlukhyy, V., Baranov, V., Grin, Y. Inorg. Chem. 2008, 47, 6051–6055; https://doi.org/10.1021/ic800387a.Search in Google Scholar PubMed

32. Gladyshevskii, E. I., Krypyakevych, P. I. Zh. Strukt. Khim. 1965, 6, 163–164.Search in Google Scholar

33. Janzon, K. H., Schäfer, H., Weiss, A. Angew. Chem. 1965, 77, 258–259; https://doi.org/10.1002/ange.19650770605.Search in Google Scholar

34. Pringle, G. E. Acta Crystallogr. 1972, B28, 2326–2328.10.1107/S0567740872006053Search in Google Scholar

35. Goldschmidt, H. J. Acta Crystallogr. 1957, 10, 769.Search in Google Scholar

36. Friauf, J. B. J. Am. Chem. Soc. 1927, 49, 3107–3114; https://doi.org/10.1021/ja01411a017.Search in Google Scholar

37. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

38. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

39. Müller, U., Wondratschek, H. International Tables for Crystallography, Vol. A1, Symmetry relations between space groups; John Wiley & Sons: Chichester, U. K., 2010.10.1107/97809553602060000110Search in Google Scholar

40. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum: Berlin, Heidelberg, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar

41. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Search in Google Scholar

42. Friauf, J. B. Phys. Rev. 1927, 29, 34–40; https://doi.org/10.1103/physrev.29.34.Search in Google Scholar

43. Tarschisch, L., Titow, A. T., Garjanow, F. K. Phys. Z. Sowjetunion. 1934, 5, 503–510.Search in Google Scholar

44. Gießelmann, E. C. J., Pöttgen, R., Janka, O. Z. Anorg. Allg. Chem. 2023, 649, e202300109.10.1002/zaac.202300109Search in Google Scholar

45. Witte, H. Metallwirtsch. Metallwiss. Metalltech. 1939, 18, 459–463.Search in Google Scholar

46. Witte, H. Z. Angew. Mineral. 1938, 1, 255–268.Search in Google Scholar

47. Noréus, D., Eriksson, L., Göthe, L., Werner, P. E. J. Less-Common Met. 1985, 107, 345–349; https://doi.org/10.1016/0022-5088(85)90093-1.Search in Google Scholar

48. Seidel, S., Janka, O., Benndorf, C., Mausolf, B., Haarmann, F., Eckert, H., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 289–303.10.1515/znb-2016-0265Search in Google Scholar

49. Gießelmann, E. C. J., Engel, S., El Saudi, I. M., Schumacher, L., Radzieowski, M., Gerdes, J. M., Janka, O. Solids 2023, 4, 166–180; https://doi.org/10.3390/solids4030011.Search in Google Scholar

50. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Search in Google Scholar

51. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

52. Hase, I., Yanagisawa, T., Iyo, A., Fujihisa, H., Goto, Y., Eisaki, H., Kawashima, K. J. Phys. Conf. Ser. 2019, 1293, 012028 (5 pages); https://doi.org/10.1088/1742-6596/1293/1/012028.Search in Google Scholar

53. Wurth, A., Mewis, A. Z. Anorg. Allg. Chem. 1999, 625, 449–452; https://doi.org/10.1002/(sici)1521-3749(199903)625:3<449::aid-zaac449>3.0.co;2-l.10.1002/(SICI)1521-3749(199903)625:3<449::AID-ZAAC449>3.0.CO;2-LSearch in Google Scholar

54. Pfannenschmidt, U., Johrendt, D., Behrends, F., Eckert, H., Eul, M., Pöttgen, R. Inorg. Chem. 2011, 50, 3044–3051; https://doi.org/10.1021/ic102570x.Search in Google Scholar

55. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

56. Togano, K., Badica, P., Nakamori, Y., Orimo, S., Takeya, H., Hirata, K. Phys. Rev. Lett. 2004, 93, 247004; https://doi.org/10.1103/physrevlett.93.247004.Search in Google Scholar

57. Takeya, H., Kasahara, S., El Massalami, M., Mochiku, T., Hirata, K., Togano, K. Mater. Sci. Forum 2007, 561–565, 2079–2082; https://doi.org/10.4028/www.scientific.net/msf.561-565.2079.Search in Google Scholar

58. Takeya, H., Hirata, K., Yamaura, K., Togano, K., El Massalami, M., Rapp, R., Chaves, F. A., Ouladdiaf, B. Phys. Rev. B 2005, 72, 104506; https://doi.org/10.1103/physrevb.72.104506.Search in Google Scholar

59. Berger, T. G., Leineweber, A., Mittemeijer, E. J., Sarbu, C., Duppel, V., Fischer, P. Z. Kristallogr. 2006, 221, 450–463; https://doi.org/10.1524/zkri.2006.221.5-7.450.Search in Google Scholar

60. Sologub, O., Salamakha, L. P., Eguchi, G., Stöger, B., Rogl, P. F., Bauer, E. Dalton Trans. 2016, 45, 4879–4887; https://doi.org/10.1039/c5dt05058h.Search in Google Scholar

61. Jeitschko, W., Pöttgen, R., Hoffmann, R.-D. Structural chemistry of Hard Materials. In Ceramic Hard Materials; Riedel, R., Ed. Wiley-VCH: Weinheim, 2000; pp. 3–40.10.1002/9783527618217.ch1Search in Google Scholar

62. Weil, K. S., Kumta, P. N., Grins, J. J. Solid State Chem. 1999, 146, 22–35; https://doi.org/10.1006/jssc.1999.8296.Search in Google Scholar

63. Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., Rodríguez-Hernandez, P., López-Solano, J., Alconchel, S., Sapiña, F. Phys. Rev. B 2010, 82, 174105.Search in Google Scholar

64. Karki, A. B., Xiong, Y. M., Vekhter, I., Browne, D., Adams, P. W., Young, D. P., Thomas, K. R., Chan, J. Y., Kim, H., Prozorov, R. Phys. Rev. B 2010, 82, 064512; https://doi.org/10.1103/physrevb.82.064512.Search in Google Scholar

65. McDonald, A. M., Cabri, L. J., Stanley, C. J., Good, D. J., Redpath, J., Lane, G., Spratt, J., Ames, D. E. Can. Mineral. 2015, 53, 845–857; https://doi.org/10.3749/canmin.1500020.Search in Google Scholar

66. Yoshida, H., Okabe, H., Matsushita, Y., Isobe, M., Takayama-Muromachi, E. Phys. Rev. B 2017, 95, 184514; https://doi.org/10.1103/physrevb.95.184514.Search in Google Scholar

67. Schaak, R. E., Sra, A. K., Leonard, B. M., Cable, R. E., Bauer, J. C., Han, Y.-F., Means, J., Teizer, W., Vasquez, Y., Funck, E. S. J. Am. Chem. Soc. 2005, 127, 3506–3515; https://doi.org/10.1021/ja043335f.Search in Google Scholar PubMed

68. Fischmeister, H. Acta Chem. Scand. 1959, 13, 852–853; https://doi.org/10.3891/acta.chem.scand.13-0852.Search in Google Scholar

69. Khan, H. R., Trunk, H., Raub, C. J., Fertig, W. A., Lawson, A. C. J. Less- Common Met. 1973, 30, 167–168; https://doi.org/10.1016/0022-5088(73)90020-9.Search in Google Scholar

70. Nesper, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Search in Google Scholar

71. Burkhardt, U., Winkelmann, A., Borrmann, H., Dumitriu, A., König, M., Cios, G., Grin, Y. Sci. Adv. 2021, 7, eabg0868; https://doi.org/10.1126/sciadv.abg0868.Search in Google Scholar PubMed PubMed Central

72. Deiseroth, H. J., Müller, H. D. Z. Anorg. Allg. Chem. 1996, 622, 405–410; https://doi.org/10.1002/zaac.19966220305.Search in Google Scholar

73. Kienle, L., Deiseroth, H. J. Z. Kristallogr. 1998, 213, 569–574.10.1524/zkri.1998.213.11.569Search in Google Scholar

74. Cherniushok, O., Cardoso-Gil, R., Parashchuk, T., Knura, R., Grin, Y., Wojciechowski, K. T. Chem. Mater. 2022, 34, 6389–6401; https://doi.org/10.1021/acs.chemmater.2c00915.Search in Google Scholar PubMed PubMed Central

75. May, W. Untersuchungen über cyclische Phosphane und Heterophosphane. Ph.D. Thesis, Universität Münster, Münster, 1978.Search in Google Scholar

76. Leoni, S., Nesper, R. Solid State Sci. 2003, 5, 95–107; https://doi.org/10.1016/s1293-2558(02)00083-3.Search in Google Scholar

77. Klepp, K. O., Parthé, E. Acta Crystallogr. 1982, B38, 1541–1544.10.1107/S056774088200630XSearch in Google Scholar

78. Eriksson, T., Bergqvist, L., Nordblad, P., Eriksson, O., Andersson, Y. J. Solid State Chem. 2004, 177, 4058–4066; https://doi.org/10.1016/j.jssc.2004.07.001.Search in Google Scholar

79. Matar, S. F., Pöttgen, R., Nakhl, M. Z. Naturforsch. 2017, 72b, 207–213.10.1515/znb-2016-0230Search in Google Scholar

80. Janka, O., Pöttgen, R. Rev. Inorg. Chem. 2023, 43, 357–383; https://doi.org/10.1515/revic-2023-0012.Search in Google Scholar

Received: 2024-01-04
Accepted: 2024-01-12
Published Online: 2024-02-23
Published in Print: 2024-02-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2024-0002/html
Scroll to top button