Skip to main content
Log in

Fusarium wilt pandemic: current understanding and molecular perspectives

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Plant diseases pose a severe threat to the food security of the global human population. One such disease is Fusarium wilt, which affects many plant species and causes up to 100% yield losses. Fusarium pathogen has high variability in its genetic constitution; therefore, it has evolved into different physiological races to infect different plant species spread across the different geographical regions of the world. The pathogen mainly affects plant roots, leading to colonizing and blocking vascular bundle cells, specifically xylem vessels. This blocking results in chlorosis, vascular discoloration, leaf wilting, shortening of plant, and, in severe cases, premature plant death. Due to the soil-borne nature of the wilt pathogen, neither agronomic nor plant protection measures effectively reduce the incidence of the disease. Therefore, the most cost-effective management strategy for Fusarium wilt is developing varieties resistant to a particular race of the fungus wilt prevalent in a given region. This strategy requires understanding the pathogen, its disease cycle, and epidemiology with climate-changing scenarios. Hence, in the review, we will discuss the pathogenic aspect and genetics of the Fusarium wilt, including molecular interventions for developing climate-smart wilt tolerant/resistant varieties of crops. Overall, this review will add to our knowledge for advancing the breeding of resistance against the wilt pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Agrios GN (2005) Induced biochemical defenses in the hypersensitive response resistance. Plant Pathol, Elsevier, pp 233–243

  • Ahamad S, Sharma JP, Jamwal BS (2019) On-farm demonstration of the management of Fusarium wilt disease of chickpea under rainfed conditions in the mid Hill region of Jammu, Jammu, and Kashmir, U.T., India. Am J Plant Biol 5(2):21–24

    Article  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, AbdAllah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MEK, Sugimoto Y, Inanaga S (2002) Sources of resistance to Fusarium wilt of chickpea in Sudan. Phytopathol Mediterr 41:163–169

  • Amorim EP, de Oliveira Amorim VB, dos Santos Silva M, Haddad F, Ferreira CF, dos Santos Serejo JA, Brazil E (2021) Developing hybrid banana varieties with improved properties. Achieving sustainable cultivation of bananas. Burleigh Dodds Science Publishing, pp 323–338

    Google Scholar 

  • Antre SH, Singh A, Ravikumar RL (2023) Molecular analysis of the F-4 progenies obtained through pollen selection for heat tolerance in maize (Zea mays). Indian J Agric Sci 93(2):210–213

    CAS  Google Scholar 

  • Arvayo-Ortiz RM, Esqueda M, Acedo FE, Gonzalez RH, Vargas RG (2012) New lines of chickpea against Fusarium oxysporum f. sp. ciceris wilt. Am J Appl Sci 9(5):686–693. https://doi.org/10.3844/ajassp.2012.686.693

    Article  Google Scholar 

  • Babu DR, Ravikumar RL (2009) Genetic evidence for resistance to Fusarium wilt of pollen grains in chickpea (Cicer arietinum L.). Curr Sci pp 811–815

  • Barman P, Handique AK, Tanti B (2014) Tagging STMS markers to Fusarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J Biotechnol 13:370–375

    CAS  Google Scholar 

  • Berrada AF, Shivakumar BG, Yaburaju NT (2007) Chickpea in cropping systems. In: Yadav SSS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Bertoldo C, Gilardi G, Spadaro D, Gullino ML, Garibaldi A (2015) Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. Eur J Plant Pathol 141:83–97

    Article  CAS  Google Scholar 

  • Bi YM, Kenton P, Mur L, Darby R, Draper J (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Jha UC, Kishor PK, Pandey S, Singh NP (2014) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32(8):1410–1428

    Article  CAS  PubMed  Google Scholar 

  • Branham SE, Levi A, Wechter WP (2019) QTL mapping identifies novel source of resistance to Fusarium wilt race 1 in Citrullus amarus. Plant Dis 103(5):984–989

    Article  CAS  PubMed  Google Scholar 

  • Brinda S, Ravikumar RL (2005) Inheritance of wilt resistance in chickpea a molecular marker analysis. Curr Sci 88(5):701–702

    Google Scholar 

  • Burger Y, Katzir N, Tzuri G, Portnoy V, Saar U, Shriber S, Perl‐Treves R, Cohen R (2003) Variation in the response of melon genotypes to Fusarium oxysporum f. sp. melonis race 1 determined by inoculation tests and molecular markers. Plant Pathol 52(2):204–211

  • Burgess LW (1981) General Ecology of the Fusaria. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, PA, USA, pp 225–235

    Google Scholar 

  • Cha JY, Han S, Hong HJ, Cho H, Kim D, KwonY., ... and Kwak YS (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10(1):119–129

  • Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Change Biol 19(7):1985–2000

    Article  ADS  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Chand H, Khirbat SK (2009) Chickpea Wilt and Its Management- a Review. Agric Rev 30:1–12

    Google Scholar 

  • Chaves N, Staver C, Dita M (2014) Interaction of Radopholus similis and Fusarium oxysporum f. sp. cubense in banana. In: Abstract retrieved from 29th international horticultural congress (Brisbane)

  • Chittarath K, Mostert D, Crew KS, Viljoen A, Kong G, Molina AB, Thomas JE (2018) First report of Fusarium oxysporum f. sp. cubense tropical race 4 (VCG 01213/16) associated with Cavendish bananas in Laos. Plant Dis 102(2):449

    Article  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38(3):432–447

    Article  CAS  PubMed  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37(1):399–426

    Article  CAS  Google Scholar 

  • Dale J, James A, Paul JY, Khanna H, Smith M, Peraza-Echeverria S, Garcia-Bastidas F, Kema G, Waterhouse P, Mengersen K, Harding R (2017) Transgenic cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8(1):1496

  • Debbarma J, Saikia B, Singha DL, Das D, Keot AK, Maharana J, Velmurugan N, Arunkumar KP, Reddy PS, Chikkaputtaiah C (2023) CRISPR/Cas9-Mediated Mutation in XSP10 and SlSAMT Genes Impart Genetic Tolerance to Fusarium Wilt Disease of Tomato (Solanum lycopersicum L.). Genes 14(2):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepthi VP (2018) Somaclonal variation in micro propagated bananas. Adv Plants Agric Res 8(6):624–627

    MathSciNet  Google Scholar 

  • Di X, Gomila JO, Takken FL (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Mol Plant Pathol 18(7):1024–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez E, Cuartero J, Fernández-Muñoz R (2005) Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica 142:253–263

    Article  Google Scholar 

  • Eujayl I, Erskine W, Bayaa B, Baum M, Pehu E (2006) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499. https://doi.org/10.1111/j.1439-0523.1998.tb01982.x

    Article  Google Scholar 

  • Garret SD (1956) Biology of Root Infecting Fungi. Camb Univ Press Camb UK Genet 110:669–677. https://doi.org/10.1007/s00122-004-1892-5

    Article  CAS  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2014) Characterization of Fusarium wilt resistant somaclonal variants of banana cv. Rasthali by cDNA-RAPD. Mol Biol Rep 41:7929–7935

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Sharma M, Telangre R, Pande S (2013) Occurrence and distribution of chickpea diseases in central and southern parts of India. Am J Plant Sci 04(4):940–944

    Article  Google Scholar 

  • Gordon TR (2017) Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev Phytopathol 55:23–39

    Article  CAS  PubMed  Google Scholar 

  • Gowda SJM, Radhika P, Kadoo N, Mhase L, Gupta V (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breeding 24:177–184. https://doi.org/10.1007/s11032-009-9282-y

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumber RK, Kumar J, Hawar MP (1995) Inheritance of resistance to Fusarium wilt in chickpea. Plant Breed 114:277–284

    Article  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157(3):493–502

  • Halila I, Cobos M, Rubio J, Millán T, Kharrat M, Marrakchi M, Gil J (2008) Tagging and mapping a second resistance gene for Fusarium wilt race 0 in chickpea. Eur J Plant Pathol 124(1):87–95

    Article  Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C et al (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110(4):669–677

    Article  CAS  PubMed  Google Scholar 

  • Haware MP (1990) Fusarium wilt and other important diseases chickpea in the Mediterranean area. In: Saxena MC, Cubero JI, Wery J (eds) Present Status and Future Prospects of Chickpea Crop Production and Improvement in the Mediterranean Countries. CIHEAM, Zaragoza, Spain, pp 61–64

    Google Scholar 

  • Haware MP, Nene YL, Rajeshwari R (1978) Eradication of Fusarium oxysporum f. sp. ciceris transmitted in chickpea seed. Phytopathology 68:1364–1367

    Article  Google Scholar 

  • Haware MP, Nene YL, Pundir RPS, Rao JN (1992) Screening of world chickpea germplasm for resistance to Fusarium wilt. Field Crop Res 30(1–2):147–154

    Article  Google Scholar 

  • Haware MP, Nene YL, Natarajan M (1996) The survival of Fusarium oxysporum f. sp. ciceris in the soil in the absence of chickpea. Phytopathol Mediterr 35:9–12

    Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death In: Programmed cell death in higher plants, pp 77–90

  • Henningsen EC, Omidvar V, Della Coletta R, Michno J-M, Gilbert E, Li F, Miller ME, Myers CL, Gordon SP, Vogel JP, Steffenson BJ, Kianian SF, Hirsch CD, Figueroa M (2021) Identification of candidate susceptibility genes to Puccinia graminis f sp tritici in wheat. Front Plant Sci 12:657796. https://doi.org/10.3389/fpls.2021.657796

    Article  PubMed  PubMed Central  Google Scholar 

  • Hormaza JI, Pinney K, Polito VS (1996) Correlation in the tolerance to ozone between sporophytes and male gametophytes of several fruit and nut tree species (Rosaceae). Sex Plant Reprod 9:44–48

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 113–119

  • Jain S, Weeden NF, Kumar A, Chittem K, McPhee K (2015) Functional codominant marker for selecting the Fw gene conferring resistance to Fusarium wilt race 1 in pea. Crop Sci 55:2639–2646

    Article  CAS  Google Scholar 

  • Jendoubi W, Bouhadida M, Boukteb A, Béji M, Kharrat M (2017) Fusarium wilt affecting chickpea crop. Agriculture 7(3):23

  • Jimenez Diaz RM, Jimenez Gasco MM, Landa BB, Castillo P, Navas-Cortes JA (2011) Fusarium Wilt of chikpea. In: Chen W, Sharma HC, Muehlbauer FJ (eds) Compendium of Chikpea and Lentil Diseases and Pests. The American Phytopathological Society, St. Paul, MN, USA

    Google Scholar 

  • Jimenez-Díaz RM, Basallote-Ureba MJ, Rapoport H (1989) Colonization and pathogenesis in chickpea infected by races of Fusarium oxysporum f. sp. ciceris. In: Tjamos EC, Beckman C (eds) Vascular Wilt Diseases of Plants, vol H28. Springer-Verlag, Berlin, Germany, p 113e121

    Google Scholar 

  • Jiménez-Díaz RM, Castillo P, del M Jiménez-Gasco M, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: Biology, ecology and management. Crop Prot. 73:16–27

    Article  Google Scholar 

  • Jimenez-Fernandez D, Landa BB, Kang S, Jimenez-Díaz RM, Navas-Cortes JA (2013) Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. PLoS One 8(4):e61360. https://doi.org/10.1371/journal.pone.0061360

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez‐Gasco MM, Milgroom MG, Jiménez‐Díaz RM (2002) Gene genealogies support Fusarium oxysporum f. sp. ciceris as a monophyletic group. Plant Pathol 51(1):72–77

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kalagatur NK, Kamasani JR, Mudili V (2018) Assessment of detoxification efficacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity. Front Microbiol 30(9):2937

    Article  Google Scholar 

  • Kelly A, Alcala-Jimenez AR, Bainbridge BW, Heale JB, Perez-Artes E, Jimenez-Diaz RM (1994) Use of genetic fingerprinting and random amplified polymorphic DNA to characterize pathotypes of Fusarium oxysporum f. sp. ciceris infecting chickpea. Phytopathol 84(11):1293–1298

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. Wallingford, UK: CAB International. ISBN 9780851998268. URL: http://bookshop.cabi.org/default.aspx?site=191&page=2633&pid=2112.

  • Kotresh H, Fakrudin B, Punnuri SM, Rajkumar BK, Thudi M, Paramesh H et al (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Millsp.). Euphytica 149:113–120. https://doi.org/10.1007/s10681-005-9059-2

    Article  CAS  Google Scholar 

  • Koval VS (2000) Male and female gametophyte selection of barley for salt tolerance. Hereditas 132(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (1998) Inheritance of resistance to Fusarium wilt (race 2) in chickpea. Plant Breed 117(2):139–143

    Article  Google Scholar 

  • Kumar J, Haware MP, Smithson JB (1985) Registration of four short duration Fusarium wilt-resistant kabuli (garbanzo) chickpea germplasms. Crop Sci 25(3):576–577

    Article  Google Scholar 

  • Lal D, Ravikumar RL, Jingade P, Subramanya S (2022) Validation of molecular markers linked to Fusarium wilt resistance (Foc 1) in recombinant inbred lines of chickpea (Cicer arietinum). Plant Breed 141(3):429–438. https://doi.org/10.1111/pbr.13019

    Article  CAS  Google Scholar 

  • Lonardi S, Muñoz‐Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo MC, Alhakami H (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J 98(5):767–782

  • Martyn RD (2014) Fusarium wilt of watermelon: 120 years of research. Hortic Rev 42:349–442

    Google Scholar 

  • Maurya AK, Simon S, John V, Lal AA (2020) Survey of Wilt (Fusarium udum) and the Cyst nematode (Heterodera cajani) Incidence on pigeonpea of prayagraj district. Curr J Appl Sci Technol 39(18):23–28. https://doi.org/10.9734/CJAST/2020/v39i1830768. (ISSN: 2457-1024)

    Article  Google Scholar 

  • Maxmen A (2019) CRISPR might be the banana’s only hope against a deadly fungus. Nature 574(7776):15–16

    Article  ADS  CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13(5):486–492

    CAS  Google Scholar 

  • Mayer M, Tullu A, Simon C, Kumar J, Kaiser W, Kraft J, Muehlbauer F (1997) Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci 37(5):1625–1637. https://doi.org/10.2135/cropsci1997.0011183X003700050036x

    Article  CAS  Google Scholar 

  • Mohapatra U, Singh A, Ravikumar RL (2020) Effect of gamete selection in improving of heat tolerance as demonstrated by shift in allele frequency in maize (Zea mays L.). Euphytica 216(5):1–10

    Google Scholar 

  • Mokhtari S, Chavez M, Ali A (2023) First Report of Fusarium oxysporum f. sp. vasinfectum causing Fusarium Wilt of Cotton in Kansas USA. Plant Dis 107(4):1239

    Article  Google Scholar 

  • Naik M (2006) Wilt of chilli with special reference to cultural, morphological, molecular characterization and pathogenic variability of Fusarium isolates of India. In: Proc. midterm review meeting of the project held at Indian institute of vegetable research, Varanasi

  • Nene YL, Haware MP, Reddy MV (1978) Diagnosis of some wilt-like disorders of chickpea (Cicer arietinum L.). In: Information Bull., vol. 3. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, A.P., India

  • Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64(379):380

    Google Scholar 

  • Noman A, Aqeel M, Lou Y (2019) PRRs and NB-LRRs: from signal perception to activation of plant innate immunity. Int J Mol Sci 20(8):1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak FJ, Afza R, Van Duren M, Perea-Dallos M, Conger BV, Xiaolang T (1989) Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (spp.). Biotechnology 7(2):154–159

    Google Scholar 

  • Nwauzoma AB, Jaja ET (2013) A review of somaclonal variation in plantain (Musa spp): mechanisms and applications. Journal of Applied Biosciences 67:5252–5260

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Rao ES, Thontadarya RN, Chandran NK, Sriram S (2020) First report on the occurrence of races 1 and 2 of Fusarium oxysporum f. sp. niveum infecting watermelon in India. Indian Phytopathol 73:793–796

    Article  Google Scholar 

  • Pande S, Rao JN, Sharma M (2007) Establishment of the chickpea wilt pathogen Fusarium oxysporum f. sp. ciceris in the soil through seed transmission. Plant Pathol J 23:3–6

    Article  Google Scholar 

  • Pande S, Desai S, Sharma M (2010) Hyderabad “impacts of climate change on rainfed crop diseases: current status and future research needs”, national symposium on climate change and rainfed. Agriculture 55:59

    Google Scholar 

  • Pandey M, Maurya AK, John V (2022) Fusarium wilt of chick pea and its management: present and future prospects. In: Pant H, Srivastava DK, Chaudhary B, Singh MK, Mathur V, Verma J, Mishra N, Singh H (eds) Emerging Sustainability Trends in Agricultural, Rural & Environmental Development. Society of Biological Sciences and Rural Development (ISBN : 978-81-923535-8-6)

    Google Scholar 

  • Pandey S, Singh A, Parida SK, Prasad M (2022) Combining speed breeding with traditional and genomics-assisted breeding for crop improvement. Plant Breed 141(3):301–313

    Article  CAS  Google Scholar 

  • Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA, Close TJ (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L) Walp]. PLoS ONE 7(7):e41600. https://doi.org/10.1371/journal.pone.0041600

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Prihatna C, Barbetti MJ, Barker SJ (2018) A novel tomato fusarium wilt tolerance gene. Front Microbiol 9:1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216. https://doi.org/10.1007/s00122-007-0556-7

    Article  CAS  PubMed  Google Scholar 

  • Rao VK, Krishnappa K (1996) Interaction of Fusarium oxysporum f. sp. ciceri with meloidogyne incognita on chickpea in two soil types. Indian Phytopathol 49(2):142–147

  • Rani TS, Ravikumar RL (2006) Sporophytic and gametophytic recurrent selection for improvement of partial resistance to Alternaria leaf blight in sunflower (Helianthus annuus L.). Euphytica 147:421–431

  • Ravikumar RL, Patil BS (2004) Effect of gamete selection on segregation of wilt susceptibility-linked DNA marker in chickpea. Curr Sci 86(5):642–643

    Google Scholar 

  • Ravikumar RL, Patil BS, Soregaon CD, Hegde SG (2007) Genetic evidence for gametophytic selection of wilt resistant alleles in chickpea. Theor Appl Genet 114:619–625

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar RL, Chaitra GN, Choukimath AM, Soregaon CD (2013) Gametophytic selection for wilt resistance and its impact on the segregation of wilt resistance alleles in chickpea (Cicer arietinum L.). Euphytica 189:173–181

    Article  CAS  Google Scholar 

  • Rebouças TA, de Jesus Rocha A, Cerqueira TS, Adorno PR, Barreto RQ, dos Santos Ferreira M, Lino LSM, de Oliveira Amorim VB, dos Santos-Serejo JA, Haddad F, Ferreira CF (2021) Pre-selection of banana somaclones resistant to Fusarium oxysporum f. sp. cubense, subtropical race 4. Crop Prot 147:105692

  • Rocha ADJ, Ferreira MDS, Rocha LDS, Oliveira SA, Amorim EP, Mizubuti ES, Haddad F (2021) Interaction between Fusarium oxysporum f. sp. cubense and Radopholus similis can lead to changes in the resistance of banana cultivars to Fusarium wilt. Eur J Plant Pathol 158:403–417

    Article  Google Scholar 

  • Rubio J, Hajj-Moussa E, Kharrat M, Moreno M, Millan T, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122(2):188–194

    Article  CAS  Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur K, Varshney RK (2013) Molecular mapping of QTL for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133. https://doi.org/10.1007/s10681-013-0959-2

    Article  Google Scholar 

  • Sagi L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep 13:262–266

    Article  CAS  PubMed  Google Scholar 

  • Sági L, Panis B, Remy S, Schoofs H, Smet KD, Swennen R, Cammue BP (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/technology 13(5):481–485

  • Saxena RK, Singh VK, Kale SM, Tathinen S, Parupalli S, Kumar V et al (2017) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for Fusarium wilt resistance in pigeonpea. Sci Rep 7:1911

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Kumar RV, Saxena RK, Sharma M, Srivastava RK, Sultana R, Varshney RK, Vales MI, Pande S (2012) Identification of dominant and recessive genes for resistance to Fusarium wilt in pigeonpea and their implication in breeding hybrids. Euphytica 188:221–227

  • Sharma M, Ghosh R (2016) An update on genetic resistance of chickpea to Ascochyta blight. Agronomy 6(1):18

    Article  Google Scholar 

  • Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14

    Article  CAS  Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89(4):385–390

    Article  PubMed  Google Scholar 

  • Sharma M, Ghosh R, Tarafdar A, Rathore A, Chobe DR, Kumar AV, Gaur PM, Samineni S, Gupta O, Singh NP, Saxena DR (2019) Exploring the genetic cipher of chickpea (Cicer arietinum L.) through identification and multi-environment validation of resistant sources against Fusarium wilt (Fusarium oxysporum f. sp. ciceris). Front Sustain Food Syst 3:78

  • Shinkado S, Saito H, Yamazaki M et al (2022) Genome editing using a versatile vector-based CRISPR/Cas9 system in Fusarium species. Sci Rep 12:16243. https://doi.org/10.1038/s41598-022-20697-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Kumar J, Smithson JB, Haware MP (1987) Complementation between genes for resistance to race 1 of Fusarium oxysporum f sp ciceris in chickpea. Plant Pathol 36(4):539–543. https://doi.org/10.1111/j.1365-3059.1987.tb02271.x

    Article  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Chitikineni A (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194. https://doi.org/10.1111/pbi.12470

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Antre SH, Ravikumar RL, Kuchanur PH, Lohithaswa HC (2020) Genetic evidence of pollen selection mediated phenotypic changes in maize conferring transgenerational heat-stress tolerance. Crop Science 60(4):1907–1924

    Article  CAS  Google Scholar 

  • Singh A, Ravikumar RL, Antre SH (2021) Comparison of Methods of pollen selection for heat tolerance and their effect in segregating population of maize (Zea mays). Agric Res 10(1):15–20

    Article  CAS  Google Scholar 

  • Singh A, Ravikumar RL, Antre SH, Kuchanur PH, Lohithaswa HC (2022) Consequence of cyclic pollen selection for heat tolerance on the performance of different generations in maize (Zea mays L). J Genet 101(2):33

    Article  PubMed  Google Scholar 

  • Smithson JB, Kumar JB, Haware MP, Singh HP (1983) Complementation between genes for late wilting of race 1 of Fusarium oxysporum f. sp. ciceris in chickpea. In: Proc. Int. Genet. Cong., IARI, New Delhi, India

  • Soregaon CD (2011) Molecular mapping and tagging of Fusarium wilt resistance in chickpea, (Cicer arietinum L). (Doctoral dissertation, PhD thesis, University of Agricultural Sciences, Dharwad)

  • Stępień Ł, Lalak-Kańczugowska J (2021) Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. Fungal Biol Rev 35:27–39

    Article  Google Scholar 

  • Tekeoglu M, Tullu A, Kaiser WJ, Muehlbauer FJ (2000) Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop Sci 40(5):1247–1256

    Article  CAS  Google Scholar 

  • Thind TS (2012) Presidential address-Fungicides in crop health security–the road ahead. Indian Phytopathol 65(2):109–115

    CAS  Google Scholar 

  • Tullu A, Muehlbauer F, Simon C, Mayer M, Kumar J, Kaiser W, Kraft J (1998) Inheritance and linkage of a gene for resistance to race 4 of Fusarium wilt and RAPD markers in chickpea. Euphytica 102(2):227–267

    Article  CAS  Google Scholar 

  • Tullu A, Kaiser W, Kraft J, Muehlbauer F (1999) A second gene for resistance to race 4 of Fusarium wilt in chickpea and linkage with a RAPD marker. Euphytica 109(1):43–47

    Article  CAS  Google Scholar 

  • Upadhyaya H, Smithson J, Haware M, Kumar J (1983) Resistance to wilt in chickpea. II. Further evidence for two genes for resistance to race 1. Euphytica 32:749–755. https://doi.org/10.1007/BF00042155

    Article  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Pande S, Singh S, Kaur L (2014) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7(1):plantgenome2013. https://doi.org/10.3835/plantgenome2013.10.0035

    Article  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A et al (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34(1–3):169–194

  • Wang X, Yu R, Li J (2021) Using genetic engineering techniques to develop banana cultivars with fusarium wilt resistance and ideal plant architecture. Front Plant Sci 11:617528

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J (2019) Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat Plants 5(8):810–821

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T et al (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum× C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

  • Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK (2023) Breeding and genomic approaches towards development of Fusarium wilt resistance in chickpea. Life 13(4):988

  • Zakaria L (2023) Fusarium species associated with diseases of major tropical fruit crops. Horticulturae 9(3):322

    Article  Google Scholar 

  • Zemankova M, Lebeda A (2001) Fusarium species, their taxonomy, variability and significance. Plant Prot Sci 37(1):25–42

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

D.L., D.D., A.N., and N.S. wrote the manuscript, S.K., and S.N., prepared the figures; S.P., and R.K.J. edited the manuscript; A.S. conceptualized and outlined the article.

Corresponding author

Correspondence to Ashutosh Singh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors are aware and agree to publish this review.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, D., Dev, D., Kumari, S. et al. Fusarium wilt pandemic: current understanding and molecular perspectives. Funct Integr Genomics 24, 41 (2024). https://doi.org/10.1007/s10142-024-01319-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01319-w

Keywords

Navigation