Skip to main content
Log in

Relativistic and nonrelativistic Landau levels for the noncommutative quantum Hall effect with anomalous magnetic moment in a conical Gödel-type spacetime

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we analyze the relativistic and nonrelativistic energy spectra (fermionic Landau levels) for the noncommutative quantum Hall effect with anomalous magnetic moment in the conical Gödel-type spacetime in \((2+1)\)-dimensions, where such spacetime is the combination of the flat Gödel-type spacetime with a cosmic string (conical gravitational topological defect). To analyze these energy spectra, we start from the noncommutative Dirac equation with minimal and nonminimal couplings in polar coordinates. Using the tetrads formalism, we obtain a second-order differential equation. Next, we solve exactly this differential equation, where we obtain a generalized Laguerre equation, and also a quadratic polynomial equation for the total relativistic energy. By solving this polynomial equation, we obtain the relativistic energy spectrum of the fermion and antifermion. Besides, we also analyze the nonrelativistic limit of the system, where we obtain the nonrelativistic energy spectrum. In both cases (relativistic and nonrelativistic), we discuss in detail the characteristics of each spectrum as well as the influence of all parameters and physical quantities in such spectra. Comparing our problem with other works, we verified that our results generalize several particular cases in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

This manuscript has no associated data or the data will not be deposited. [Author’s comment: There is no data because this is theoretical work based on calculations to obtain the relativistic and nonrelativistic Landau levels for the noncommutative quantum Hall effect with anomalous magnetic moment in a conical Godel-type spacetime.]

References

  1. von Klitzing, K., Dorda, G., Pepper, M.: Phys. Rev. Lett. 45, 494 (1980)

    ADS  Google Scholar 

  2. Yoshioka, D.: The Quantum Hall Effect. Springer, Berlin (2002)

    Google Scholar 

  3. Hall, E.H.: Am. J. Math. 2, 287–292 (1879)

    Google Scholar 

  4. Novoselov, K.S., et al.: Science 315, 1379–1379 (2007)

    ADS  CAS  PubMed  Google Scholar 

  5. Fröhlich, J., Studer, U.M.: Commun. Math. Phys. 148, 553–600 (1992)

    ADS  Google Scholar 

  6. Ishikawa, K., Toyoki, M.: Nucl. Phys. B 280, 523–548 (1987)

    ADS  Google Scholar 

  7. Thouless, D.J., et al.: Phys. Rev. Lett. 49, 405 (1982)

    ADS  CAS  Google Scholar 

  8. Brandão, J., et al.: Results Phys. 5, 55 (2015)

    ADS  Google Scholar 

  9. Haldane, F.D.M.: Phys. Rev. Lett. 61, 2015 (1988)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  10. Schakel, A.M.: Phys. Rev. D 43, 1428 (1991)

    ADS  CAS  Google Scholar 

  11. Lamata, L., et al.: New J. Phys. 13, 095003 (2011)

    ADS  Google Scholar 

  12. Miransky, V.A., Shovkovy, I.A.: Phys. Rep. 576, 1–209 (2015)

    ADS  CAS  Google Scholar 

  13. Ishikawa, K.: Phys. Rev. D 31, 1432 (1985)

    ADS  MathSciNet  CAS  Google Scholar 

  14. Beneventano, C.G., Santangelo, E.M.: J. Phys. A Math. Gen. 39, 7457 (2006)

    ADS  Google Scholar 

  15. Popovic, R.S.: Hall Effect Devices. CRC Press, Cambridge (2003)

    Google Scholar 

  16. Chien, C.: The Hall Effect and Its Applications. Springer, Berlin (2013)

    Google Scholar 

  17. Lenz, J., Edelstein, S.: IEEE Sens. J. 6, 631–649 (2006)

    ADS  Google Scholar 

  18. Jeckelmann, B., Jeanneret, B.: Rep. Prog. Phys. 64, 1603 (2001)

    ADS  CAS  Google Scholar 

  19. Tran, D.T., Cooper, N.R., Goldman, N.: Phys. Rev. A 97, 061602 (2018)

    ADS  CAS  Google Scholar 

  20. Thakurathi, M., Burkov, A.A.: Phys. Rev. B 101, 235168 (2020)

    ADS  CAS  Google Scholar 

  21. Yoshida, T., et al.: Phys. Rev. Res. 2, 033428 (2020)

    CAS  Google Scholar 

  22. Yoshida, T., Kudo, K., Hatsugai, Y.: Sci. Rep. 9, 16895 (2019)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shamim, S., et al.: Sci. Adv. 6, eaba4625 (2020)

  24. Zeng, T.S.: Halperin \((m^{\prime }, m, n)\) fractional quantum Hall effect in topological flat bands. arXiv:2304.08948 (2023)

  25. Sodemann, I., Fu, L.: Phys. Rev. Lett. 115, 216806 (2015)

    ADS  PubMed  Google Scholar 

  26. Nandy, S., Sodemann, I.: Phys. Rev. B 100, 195117 (2019)

    ADS  CAS  Google Scholar 

  27. Ma, Q., et al.: Nature 565, 337–342 (2019)

    ADS  CAS  PubMed  Google Scholar 

  28. Kang, K., et al.: Nat. Mater. 18, 324–328 (2019)

    ADS  CAS  PubMed  Google Scholar 

  29. Kumar, D., et al.: Nat. Nanotechnol. 16, 421–425 (2021)

    ADS  CAS  PubMed  Google Scholar 

  30. Snyder, H.S.: Phys. Rev. 71, 38 (1947)

    ADS  MathSciNet  Google Scholar 

  31. Snyder, H.S.: Phys. Rev. 72, 68 (1947)

    ADS  MathSciNet  Google Scholar 

  32. Szabo, R.J.: Phys. Rep. 378, 207 (2003)

    ADS  MathSciNet  CAS  Google Scholar 

  33. Douglas, M.R., Nekrasov, N.A.: Rev. Mod. Phys. 73, 977 (2001)

    ADS  Google Scholar 

  34. Seiberg, N., Witten, E.: J. High Energy Phys. 09, 032 (1999)

    ADS  Google Scholar 

  35. Bertolami, O., et al.: Phys. Rev. D 72, 025010 (2005)

    ADS  MathSciNet  Google Scholar 

  36. Bastos, C., et al.: Int. J. Mod. Phys. A 28, 1350064 (2013)

    ADS  Google Scholar 

  37. Hinchliffe, I., et al.: Int. J. Mod. Phys. A 19, 179 (2004)

    ADS  MathSciNet  Google Scholar 

  38. Melic, B., et al.: Phys. Rev. D 72, 057502 (2005)

    ADS  Google Scholar 

  39. Schupp, P., et al.: Eur. Phys. J. C 36, 405 (2004)

    ADS  CAS  Google Scholar 

  40. Abel, S.A., et al.: J. High Energy Phys. 09, 074 (2006)

    ADS  Google Scholar 

  41. Pikovski, I., et al.: Nat. Phys. 8, 393 (2012)

    CAS  Google Scholar 

  42. Moffat, J.W.: Phys. Lett. B 491, 345–352 (2000)

    ADS  MathSciNet  CAS  Google Scholar 

  43. Szabo, R.J.: Gen. Relativ. Gravit. 42, 1–29 (2010)

    ADS  Google Scholar 

  44. Piscicchia, K., et al.: Phys. Rev. Lett. 129, 131301 (2022)

    ADS  CAS  PubMed  Google Scholar 

  45. Piscicchia, K., et al.: Phys. Rev. D 107, 026002 (2023)

    ADS  MathSciNet  CAS  Google Scholar 

  46. Carlson, C.E., Carone, C.D., Lebed, R.F.: Phys. Lett. B 518, 201 (2001)

    ADS  CAS  Google Scholar 

  47. Riad, I.F., Sheikh-Jabbari, M.M.: J. High Energy Phys. 2000, 045 (2000)

    Google Scholar 

  48. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    ADS  MathSciNet  CAS  Google Scholar 

  49. Khordad, R., Rastegar Sedehi, H.R.: Eur. Phys. J. Plus 134, 1–9 (2019)

    CAS  Google Scholar 

  50. Dayi, O.F., Jellal, A.: J. Math. Phys. 43, 4592 (2002)

    ADS  MathSciNet  Google Scholar 

  51. Dulat, S., Li, K.: Eur. Phys. J. C 60, 163 (2009)

    ADS  CAS  Google Scholar 

  52. Gamboa, J., Loewe, M., Rojas, J.C.: Phys. Rev. D 64, 067901 (2001)

    ADS  MathSciNet  Google Scholar 

  53. Hassanabadi, H., et al.: J. Math. Phys. 55, 033502 (2014)

    ADS  MathSciNet  Google Scholar 

  54. Ho, P.M., Kao, H.C.: Phys. Rev. Lett. 88, 151602 (2002)

    ADS  MathSciNet  PubMed  Google Scholar 

  55. Oliveira, R.R.S., Landim, R.R.: Thermodynamic properties of the noncommutative Dirac oscillator with a permanent electric dipole moment. arXiv:2212.10339 (2022)

  56. Greiner, W., Reinhardt, J.: Quantum Electrodynamics, vol. 4. Springer, Berlin (2009)

    Google Scholar 

  57. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, vol. 3. Springer, Berlin (2000)

    Google Scholar 

  58. Geiger, K., et al.: Zeitschr. Phys. A At. Nucl. 329, 77 (1988)

    ADS  CAS  Google Scholar 

  59. Schwinger, J.: Phys. Rev. 73, 416 (1948)

    ADS  CAS  Google Scholar 

  60. Aoyama, T., et al.: Phys. Rev. Lett. 109, 111807 (2012)

    ADS  PubMed  Google Scholar 

  61. Hanneke, D., Fogwell, S., Gabrielse, G.: Phys. Rev. Lett. 100, 120801 (2008)

    ADS  CAS  PubMed  Google Scholar 

  62. Jegerlehner, F., Nyffeler, A.: Phys. Rep. 477, 1 (2009)

    ADS  CAS  Google Scholar 

  63. Abi, B., et al.: Phys. Rev. Lett. 126, 141801 (2021)

    ADS  CAS  PubMed  Google Scholar 

  64. Acciarri, M., et al.: Phys. Lett. B 434, 169–179 (1998)

    ADS  CAS  Google Scholar 

  65. Gutierrez-Rodriguez, A., et al.: Eur. Phys. J. A 55, 139 (2019)

    ADS  CAS  Google Scholar 

  66. Aharonov, Y., Casher, A.: Phys. Rev. Lett. 53, 319 (1984)

    ADS  MathSciNet  CAS  Google Scholar 

  67. Oliveira, R.R.S.: Eur. Phys. J. C 79, 79 (2019)

    Google Scholar 

  68. Oliveira, R.R.S., Borges, V.F.S., Sousa, M.F.: Braz. J. Phys. 49, 801–807 (2019)

    ADS  CAS  Google Scholar 

  69. Moshinsky, M.A., Szczepaniak, J.: J. Phys. A Math. Gen. 22, L817 (1989)

    ADS  Google Scholar 

  70. Martinez-y-Romero, R.P., et al.: Eur. J. Phys. 16, 135 (1995)

    MathSciNet  Google Scholar 

  71. Oliveira, R.R.S., Maluf, R.V., Almeida, C.A.S.: Ann. Phys. 400, 1–8 (2019)

    ADS  CAS  Google Scholar 

  72. Oliveira, R.R.S.: Gen. Relativ. Gravit. 52, 88 (2020)

    ADS  Google Scholar 

  73. Oliveira, R.R.S., Alencar, G., Landim, R.R.: Gen. Relativ. Gravit. 55, 15 (2023)

    ADS  Google Scholar 

  74. Oliveira, R.R.S., Landim, R.R.: Thermodynamic properties of the noncommutative quantum Hall effect with anomalous magnetic moment. arXiv:2302.04371 (2023)

  75. Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)

    ADS  Google Scholar 

  76. Deszcz, R., et al.: Int. J. Geom. Methods Mod. Phys. 11, 1450025 (2014)

    MathSciNet  Google Scholar 

  77. Gleiser, R.J., et al.: Class. Quantum Gravity 23, 2653 (2006)

    ADS  Google Scholar 

  78. Barrow, J.D., Dabrowski, M.P.: Phys. Rev. D 58, 103502 (1998)

    ADS  MathSciNet  Google Scholar 

  79. Rebouças, M.J., Tiomno, J.: Phys. Rev. D 28, 1251 (1983)

    ADS  MathSciNet  Google Scholar 

  80. Drukker, N., Fiol, B., Simón, J.: J. Cosmol. Astropart. Phys. 2004, 012 (2004)

    Google Scholar 

  81. Carvalho, J., de Carvalho, A.M., Furtado, C.: Eur. Phys. J. C 74, 2935 (2014)

    ADS  Google Scholar 

  82. Kibble, T.W.B.: J. Phys. A 19, 1387 (1976)

    ADS  Google Scholar 

  83. Vilenkin, A.: Phys. Rep. 121, 263 (1985)

    ADS  MathSciNet  CAS  Google Scholar 

  84. Cui, Y., et al.: J. High Energy Phys. 2019, 1 (2019)

    Google Scholar 

  85. Auclair, P., et al.: J. Cosmol. Astropart. Phys. 2020, 034 (2020)

    MathSciNet  CAS  Google Scholar 

  86. Blasi, S., Brdar, V., Schmitz, K.: Phys. Rev. Lett. 126, 041305 (2021)

    ADS  CAS  PubMed  Google Scholar 

  87. de Montigny, M., Zare, S., Hassanabadi, H.: Gen. Relativ. Gravit. 50, 1–24 (2018)

    Google Scholar 

  88. Garcia, G.Q., Oliveira, J.D.S., Furtado, C.: Int. J. Mod. Phys. D 27, 1850027 (2018)

    ADS  Google Scholar 

  89. Vitória, R.L.L., Furtado, C., Bakke, K.: Eur. Phys. J. C 78, 1–5 (2018)

    Google Scholar 

  90. Eshghi, M., Hamzavi, M.: Eur. Phys. J. C 78, 522 (2018)

    ADS  Google Scholar 

  91. Ahmed, F.: Eur. Phys. J. C 79, 534 (2019)

    ADS  Google Scholar 

  92. Sedaghatnia, P., Hassanabadi, H., Ahmed, F.: Eur. Phys. J. C 79, 541 (2019)

    ADS  Google Scholar 

  93. Som, M.M., Raychaudhuri, A.K.: Proc. R. Soc. A 304, 81 (1968)

    ADS  Google Scholar 

  94. Horowitz, G.T., Tseytlin, A.A.: Phys. Rev. D 51, 2896 (1995)

    ADS  MathSciNet  CAS  Google Scholar 

  95. Russo, J.G., Tseytlin, A.A.: Nucl. Phys. B 448, 293–328 (1995)

    ADS  Google Scholar 

  96. Russo, J.G., Tseytlin, A.A.: Nucl. Phys. B 454, 164–184 (1995)

    ADS  Google Scholar 

  97. Boyda, E.K., et al.: Phys. Rev. D 67, 106003 (2003)

    ADS  MathSciNet  Google Scholar 

  98. Harmark, T., Takayanagi, T.: Nucl. Phys. B 662, 3–39 (2003)

    ADS  Google Scholar 

  99. Hagen, C.R.: Phys. Rev. Lett. 64, 2347 (1990)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  100. Mustafa, O.: Phys. Scr. 98, 015302 (2022)

    ADS  Google Scholar 

  101. Mustafa, O.: Eur. Phys. J. Plus 138, 21 (2023)

    Google Scholar 

  102. Lawrie, I.D.: A Unified Grand Tour of Theoretical Physics, vol. 3. CRC Press, London (2012)

    Google Scholar 

  103. Bakke, K., Furtado, C.: Phys. Rev. D 80, 024033 (2009)

    ADS  Google Scholar 

  104. Bakke, K., Furtado, C.: Phys. Rev. D 82, 084025 (2010)

    ADS  Google Scholar 

  105. Maluf, J.W.: Ann. Phys. (Berlin) 525, 339–357 (2013)

    ADS  Google Scholar 

  106. Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  107. Cunha, M.S., et al.: Eur. Phys. J. C 76, 1–7 (2016)

    CAS  Google Scholar 

  108. Cunha, M.M., Dias, H.S., Silva, E.O.: Phys. Rev. D 102, 105020 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  109. Van Dyck Jr, R.S., Schwinberg, P.B., Dehmelt, H.G.: Phys. Rev. Lett. 59, 26 (1987)

    ADS  PubMed  Google Scholar 

  110. Jellal, A.: Phys. Lett. A 385, 126964 (2021)

    CAS  Google Scholar 

  111. Silenko, A.Y.: Theor. Math. Phys. 176, 987–999 (2013)

    MathSciNet  Google Scholar 

  112. Guinea, F., Neto, A.H.C., Peres, N.M.R.: Phys. Rev. B 73, 245426 (2006)

    ADS  Google Scholar 

  113. Bhuiyan, A., Marsiglio, F.: Am. J. Phys. 88, 986–1005 (2020)

    ADS  Google Scholar 

  114. Li, C.F., Wang, Q.: Phys. B Condens. 269, 22–27 (1999)

    ADS  CAS  Google Scholar 

  115. Das, S., Gegenberg, J.: Gen. Relativ. Gravit. 40, 2115–2129 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. S. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.R.S. Relativistic and nonrelativistic Landau levels for the noncommutative quantum Hall effect with anomalous magnetic moment in a conical Gödel-type spacetime. Gen Relativ Gravit 56, 30 (2024). https://doi.org/10.1007/s10714-024-03209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03209-9

Keywords

Navigation