Skip to main content

Advertisement

Log in

Estrogen-related receptor alpha (ERRα) promotes the migration, invasion and angiogenesis of breast cancer stem cell-like cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer progression, metastasis and recurrence are largely driven by breast cancer stem cells (BCSCs), which constitute a subset of tumor cells exhibiting stem cell characteristics. In this study, we evaluated the role of estrogen-related receptor alpha (ERRα) in the migration, invasion and angiogenesis of BCSCs. The inhibition of ERRα using XCT790 or knockdown of ERRα using shRNA inhibited the mammosphere formation efficiency, as well as the migration and invasion of BCSCs derived from the mammospheres of MCF7 and MDA-MB-231 (MB231) cells. Conversely, the overexpression of ERRα significantly increased the migration and invasion of BCSCs derived from the mammosphere. In addition, the XCT790 treatment or shERRα significantly downregulated the epithelial-mesenchymal transition (EMT), as evidenced by the downregulation in the expression of vimentin, Snail, Slug and N-cadherin in the mammospheres of MCF7 and MB231 cells. The chorioallantoic membrane assay showed that the conditioned media from XCT790-treated and shERRα cells significantly inhibited blood vessel formation and vessel length. Furthermore, XCT790 treatment or shERRα also downregulated the expression of molecular markers of angiogenesis, such as VEGF-A and Ang-2 in the mammospheres. Conversely, the overexpression of ERRα in MCF7 cells significantly increased both EMT and angiogenesis. These findings suggest that ERRα inhibits the migration, invasion and angiogenesis of BCSCs, suggesting as a potential target for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files. Any other data available from the corresponding author upon reasonable request.

Abbreviations

Ang-2:

Angiotensin-2

BCSC:

Breast cancer stem cell

bFGF:

Basic fibroblast growth factor

CSC:

Cancer stem cell

DMEM:

Dulbecco’s modified eagle medium

EGF:

Epidermal growth factor

ER:

Estrogen receptor

ERRα:

Estrogen-related receptor alpha

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HER2:

Human epidermal growth factor receptor 2

L15:

Leibovitz 15

MB231:

MDA-MB-231

MFE:

Mammosphere forming efficiency

TNBC:

Triple-negative breast cancer

VEGF:

Vascular endothelial growth factor

XCT790:

3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl) acrylamide

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Van Mechelen M, Van Herck A, Punie K, Nevelsteen I, Smeets A, Neven P, et al. Behavior of metastatic breast cancer according to subtype. Breast Cancer Res Treat. 2020;181:115–25. https://doi.org/10.1007/s10549-020-05597-3.

    Article  CAS  PubMed  Google Scholar 

  3. van Maaren MC, de Munck L, Strobbe LJA, Sonke GS, Westenend PJ, Smidt ML, et al. Ten-year recurrence rates for breast cancer subtypes in the Netherlands: a large population-based study. Int J Cancer. 2019;144:263–72. https://doi.org/10.1002/ijc.31914.

    Article  CAS  PubMed  Google Scholar 

  4. Welch DR, Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79:3011–27. https://doi.org/10.1158/0008-5472.CAN-19-0458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayob A, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20. https://doi.org/10.1186/s12929-018-0426-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 2021;133:110909. https://doi.org/10.1016/J.BIOPHA.2020.110909.

    Article  CAS  PubMed  Google Scholar 

  7. Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, et al. Oct-4 and nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget. 2014;5:10803–15. https://doi.org/10.18632/oncotarget.2506.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting angiogenesis in breast cancer: current evidence and future perspectives of novel anti-angiogenic approaches. Front Pharmacol. 2022;13:838133. https://doi.org/10.3389/FPHAR.2022.838133/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 2014;74:1566–75. https://doi.org/10.1158/0008-5472.CAN-13-1641.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Ma H, Yao J. ERα, a key target for cancer therapy: a review. Onco Targets ther. 2020;21:13:2183–91. https://doi.org/10.2147/OTT.S236532.

    Article  Google Scholar 

  11. Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer. 2013;13:27–36. https://doi.org/10.1038/NRC3396.

    Article  CAS  PubMed  Google Scholar 

  12. Manna S, Bostner J, Sun Y, Miller LD, Alayev A, Schwartz NS, et al. ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin Cancer Res. 2016;22:1421–31. https://doi.org/10.1158/1078-0432.CCR-15-0857.

    Article  CAS  PubMed  Google Scholar 

  13. Ma JH, Qi J, Lin SQ, Zhang CY, Liu FY, Xie WD, et al. STAT3 targets ERRα to promote epithelial–mesenchymal transition, migration, and invasion in triple-negative breast cancer cells. Mol Cancer Res. 2019;17:2184–95. https://doi.org/10.1158/1541-7786.MCR-18-1194.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, et al. Estrogen-related receptor α in human breast carcinoma as a potent prognostic factor. Cancer Res. 2004;64:4670–76. https://doi.org/10.1158/0008-5472.CAN-04-0250.

    Article  CAS  PubMed  Google Scholar 

  15. Stein RA, Chang C, Kazmin DA, Way J, Schroeder T, Wergin M, et al. Estrogen-related receptor α is critical for the growth of estrogen receptor–negative breast cancer. Cancer Res. 2008;68:8805–12. https://doi.org/10.1158/0008-5472.CAN-08-1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bianco S, Lanvin O, Tribollet V, Macari C, North S, Vanacker JM. Modulating estrogen receptor-related receptor-α activity inhibits cell proliferation. J Biol Chem. 2009;284:23286–92. https://doi.org/10.1074/JBC.M109.028191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu YM, Chen ZJ, Liu H, Wei WD, Lu LL, Yang XL, et al. Inhibition of ERRα suppresses epithelial mesenchymal transition of triple negative breast cancer cells by directly targeting fibronectin. Oncotarget. 2015;6:25588–601. https://doi.org/10.18632/oncotarget.4436.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berman AY, Manna S, Schwartz NS, Katz YE, Sun Y, Behrmann CA, et al. ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduct Target Ther. 2017;2:17035. https://doi.org/10.1038/sigtrans.2017.35.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Naik M, Brahma P, Dixit M. A cost-effective and eefficient chick ex-ovo CAM assay protocol to assess angiogenesis. Methods Protoc. 2018;1:19. https://doi.org/10.3390/mps1020019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kue CS, Tan KY, Lam ML, Lee HB. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim. 2015;64:129–38. https://doi.org/10.1538/expanim.14-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. The public health service responds to commonly asked questions. ILAR J. 1991;33(4):68–70. https://doi.org/10.1093/ilar.33.4.68.

    Article  Google Scholar 

  22. Thomas D, Thiagarajan PS, Rai V, Reizes O, Lathia J, Egelhoff T. Increased cancer stem cell invasion is mediated by myosin IIB and nuclear translocation. Oncotarget. 2016;7:47586–92. https://doi.org/10.18632/oncotarget.9896.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu Y, Sarkissyan M, Vadgama J. Epithelial-mesenchymal transition and breast cancer. J Clin Med. 2016;5:13. https://doi.org/10.3390/jcm5020013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mani SA, Guo W, Liao M-J, Eaton ENg, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11:64. https://doi.org/10.1186/S13045-018-0605-5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8. https://doi.org/10.1038/s41392-020-0110-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8. https://doi.org/10.1038/nature09557.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, et al. Human hepatocellular carcinoma tumor–derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009;15:4838–46. https://doi.org/10.1158/1078-0432.CCR-08-2780.

    Article  CAS  PubMed  Google Scholar 

  29. Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 2021;11:55–70. https://doi.org/10.1016/j.apsb.2020.09.016.

    Article  CAS  PubMed  Google Scholar 

  30. Muduli K, Prusty M, Pradhan J, Samal AP, Sahu B, Roy DS, et al. Estrogen-related receptor alpha (ERRα) promotes cancer stem cell-like characteristics in breast cancer. Stem Cell Rev Rep. 2023;19:2807–19. https://doi.org/10.1007/s12015-023-10605-2.

    Article  CAS  PubMed  Google Scholar 

  31. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13:2236–52. https://doi.org/10.1111/j.1582-4934.2008.00455.x.

    Article  PubMed  Google Scholar 

  32. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 2017;7:13856. https://doi.org/10.1038/s41598-017-14364-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012;122:1991–2005. https://doi.org/10.1172/JCI58832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Indian Council of Medical Research (ICMR) (45/30/2020-BIO/BMS), Government of India and Science and Engineering Research Board (SERB), DST (EMR/2016/006964). KM, MP and JP are supported by Research Fellowships from UGC, ICMR and CSIR, respectively, Government of India. We also acknowledge the infrastructure support available through the DBT-BUILDER program (BT/INF/22/SP42155/2021).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KM, SE and KSR; methodology, KM, JP, MP, APS and SE; validation, KM, JP, APS and SE; analysis, KM, JP and SE; writing-original draft preparation, KM and SE; writing-review and editing, KM, JP, MP, KSR and SE; supervision, KSR and SE; project administration, SE; funding acquisition, KM and SE. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Selvakumar Elangovan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muduli, K., Pradhan, J., Prusty, M. et al. Estrogen-related receptor alpha (ERRα) promotes the migration, invasion and angiogenesis of breast cancer stem cell-like cells. Med Oncol 41, 78 (2024). https://doi.org/10.1007/s12032-024-02329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02329-1

Keywords

Navigation