Skip to main content
Log in

Dual suppressive effect of p-coumaric acid on pigmentation in B16F10 cells

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Hyperpigmentation, frequently triggered by an excessive production of melanin, is a common issue within the realms of dermatology and cosmetology. In addition to regulating tyrosinase activity, the autophagy process plays a role in melanosome turnover, contributing to pigmentation control. p-Coumaric acid (PCA), a dietary phenolic compound with antioxidant and anti-inflammatory properties, was investigated for its dual suppressive effects on melanin production induced by alpha-melanocyte-stimulating hormone (α-MSH) and autophagy inhibitors in B16F10 cells.

Results

PCA (25–100 µg/mL) serves as a potent in vitro inhibitor of tyrosinase activity. In addition, PCA can effectively mitigate the upregulation of tyrosinase gene expression (P < 0.01) and its cellular activities induced by α-MSH. In contrast to early-stage autophagy inhibitors like SBI0206965 (SBI) and spautin-1, treatment with 50 µM of chloroquine (CQ) and 20 nM of bafilomycin A1 (BFA), both of which inhibit the late stages of the autophagic process, results in an increase in melanin content within B16F10 cells, independent of cellular tyrosinase activity. Furthermore, PCA treatment could protect cells against CQ and BFA-induced lysosomal damage, ultimately leading to the promotion of autolysosome formation and the activation of the autophagic process, which results in melanin degradation.

Conclusions

In summary, PCA exhibits dual suppressive effects on melanogenesis via inhibiting tyrosinase activity and melanin accumulation caused by lysosomal dysfunction. These effects offer an enhanced opportunity for the development of a safe and effective anti-melanogenesis agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

BFA:

Bafilomycin A1

CQ:

Chloroquine

PCA:

p-Coumaric acid

SBI:

SBI0206965

α-MSH:

Alpha-melanocyte-stimulating hormone

UV:

Ultraviolet

References

  • Al-Bari MAA (2015) Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70(6):1608–1621

    Article  PubMed  Google Scholar 

  • Boo YC (2019) p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants (basel) 8(8):275

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Martins JI, Gonzatti MB, Varela MT, Sousa MEP, Costa LVS, Rodrigues EG, Fernandes JPS, Keller AC (2023) Esterification of p-coumaric acid improves the control over melanoma cell growth. Biomedicines 11(1):196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayce KA, Feldman SR, McMichael AJ (2004) Hyperpigmentation: a review of common treatment options. J Drugs Dermatol 3(6):668–673

    PubMed  Google Scholar 

  • Costin G-E, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21(4):976–994

    Article  CAS  PubMed  Google Scholar 

  • d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, Galván I, Ghanem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon JD, Zecca L, Zucca FA, Napolitano A, Ito S (2015) Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res 28(5):520–544

    Article  PubMed  Google Scholar 

  • Espósito ACC, de Souza NP, Miot LDB, Miot HA (2021) Deficit in autophagy: a possible mechanism involved in melanocyte hyperfunction in melasma. Indian J Dermatol Venereol Leprol. https://doi.org/10.25259/IJDVL_927_20

    Article  PubMed  Google Scholar 

  • Guglielmi F, Luceri C, Giovannelli L, Dolara P, Lodovici M (2003) Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br J Nutr 89(5):581–587

    Article  CAS  PubMed  Google Scholar 

  • Ho H, Ganesan AK (2011) The pleiotropic roles of autophagy regulators in melanogenesis. Pigment Cell Melanoma Res 24(4):595–604

    Article  CAS  PubMed  Google Scholar 

  • Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan AK (2011) WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 286(14):12509–12523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyoti Roy A, Stanely Mainzen Prince P (2013) Preventive effects of p-coumaric acid on lysosomal dysfunction and myocardial infarct size in experimentally induced myocardial infarction. Eur J Pharmacol 699(1–3):33–39

    Article  PubMed  Google Scholar 

  • Katsuyama Y, Taira N, Yoshioka M, Okano Y, Masaki H (2017) Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autophagy. Biochem Biophys Res Commun 485(1):126–130

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim J, Ahn Y, Lee EJ, Hwang S, Almurayshid A, Park K, Chung H-J, Kim HJ, Lee S-H, Lee M-S, Oh SH (2020) Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes. Pigment Cell Melanoma Res 33(3):403–415

    Article  CAS  PubMed  Google Scholar 

  • Kovacs D, Cardinali G, Picardo M, Bastonini E (2022) Shining Light on Autophagy in Skin Pigmentation and Pigmentary Disorders. Cells 11(19):2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW, Kim M, Lee SH, Kim KD (2022) The Function of Autophagy as a Regulator of Melanin Homeostasis. Cells 11(13):2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luceri C, Guglielmi F, Lodovici M, Giannini L, Messerini L, Dolara P (2004) Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scand J Gastroenterol 39(11):1128–1133

    CAS  PubMed  Google Scholar 

  • Manga P, Boissy RE, Pifko-Hirst S, Zhou BK, Orlow SJ (2001) Mislocalization of melanosomal proteins in melanocytes from mice with oculocutaneous albinism type 2. Exp Eye Res 72(6):695–710

    Article  CAS  PubMed  Google Scholar 

  • Marks MS, Seabra MC (2001) The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2(10):738–748

    Article  CAS  PubMed  Google Scholar 

  • Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14(8):1435–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni-Komatsu L, Tong C, Chen G, Brindzei N, Orlow SJ (2008) Identification of quinolines that inhibit melanogenesis by altering tyrosinase family trafficking. Mol Pharmacol 74(6):1576–1586

    Article  PubMed  Google Scholar 

  • Park HJ, Jo DS, Choi H, Bae JE, Park NY, Kim JB, Choi JY, Kim YH, Oh GS, Chang JH, Kim HJ, Cho DH (2020) Melasolv induces melanosome autophagy to inhibit pigmentation in B16F1 cells. PLoS ONE 15(9):e0239019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32(1):403–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis FS, Lima RT, Morales P, Ferreira IC, Vasconcelos MH (2015) Methanolic extract of ganoderma lucidum induces autophagy of AGS human gastric tumor cells. Molecules 20(10):17872–17882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Seo YK, Kim SJ, Boo YC, Baek JH, Lee SH, Koh JS (2011) Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin Exp Dermatol 36(3):260–266

    Article  CAS  PubMed  Google Scholar 

  • Shailasree S, Venkataramana M, Niranjana SR, Prakash HS (2015) Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Mol Neurobiol 51(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Song K, An SM, Kim M, Koh J-S, Boo YC (2011) Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. J Dermatol Sci 63(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Varela MT, Ferrarini M, Mercaldi VG, Sufi BDS, Padovani G, Nazato LIS, Fernandes JPS (2020) Coumaric acid derivatives as tyrosinase inhibitors: efficacy studies through in silico, in vitro and ex vivo approaches. Bioorg Chem 103:104108

    Article  CAS  PubMed  Google Scholar 

  • Videira IF, Moura DF, Magina S (2013) Mechanisms regulating melanogenesis. An Bras Dermatol 88(1):76–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Wawrzyńczak A (2023) Cosmetic and pharmaceutic products with selected natural and synthetic substances for melasma treatment and methods of their analysis. Cosmetics 10(3):86

    Article  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-F, Gruber F, Ni C, Mildner M, Koenig U, Karner S, Barresi C, Rossiter H, Narzt M-S, Nagelreiter IM, Larue L, Tobin DJ, Eckhart L, Tschachler E (2015) Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J Investig Dermatol 135(5):1348–1357

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zhao Z, Cheng B (2020) The role of autophagy in skin pigmentation. Eur J Dermatol 30(6):655–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20210310) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (2022R1A2C1091887).

Author information

Authors and Affiliations

Authors

Contributions

SHJ, EHS, YKK, MH and SRL designed the experiments and wrote the manuscript. CWH, SHK, JHC and HJK performed the experiments and analyzed the data. SNK and SSH confirmed the authenticity of all the raw data. YKK, MH and SRL analyzed the data and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Sung Ryul Lee or Eun-Hwa Sohn.

Ethics declarations

Conflict of interest

Sohee Jang, Chang-Woo Ha, Sung-Hyeok Kim, Jung Hun Choi, Seung Namkoong, Sungsil Hong, Hyun Jung Koo, Youn-Kyu Kim, Mediana Hadiwidjaja, Sung Ryul Lee, Eun-Hwa Sohn declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human and animal and this study was performed following institutional and national guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S., Ha, CW., Kim, SH. et al. Dual suppressive effect of p-coumaric acid on pigmentation in B16F10 cells. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00430-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00430-0

Keywords

Navigation