Skip to main content
Log in

Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 26 March 2024

This article has been updated

Abstract

Activating transcription factor 5 (ATF5) is a transcription factor that belongs to the cAMP-response element-binding protein/ATF family and is essential for the differentiation and survival of sensory neurons in mouse olfactory organs. However, transcriptional target genes for ATF5 have yet to be identified. In the present study, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments were performed to verify ATF5 target genes in the main olfactory epithelium and vomeronasal organ in the postnatal pups. ChIP-qPCR was conducted using hemagglutinin (HA)-tagged ATF5 knock-in olfactory organs. The results obtained demonstrated that ATF5-HA fusion proteins bound to the CCAAT/enhancer-binding protein-ATF response element (CARE) site in the enhancer region of nescient helix-loop-helix 1 (Nhlh1), a transcription factor expressed in differentiating olfactory and vomeronasal sensory neurons. Nhlh1 mRNA expression was downregulated in ATF5-deficient (ATF5−/−) olfactory organs. The LIM/homeobox protein transcription factor Lhx2 co-localized with ATF5 in the nuclei of olfactory and vomeronasal sensory neurons and bound to the homeodomain site proximal to the CARE site in the Nhlh1 gene. The CARE region of the Nhlh1 gene was enriched by the active enhancer marker, acetyl-histone H3 (Lys27). The present study identified Nhlh1 as a novel target gene for ATF5 in murine olfactory organs. ATF5 may upregulate Nhlh1 expression in concert with Lhx2, thereby promoting the differentiation of olfactory and vomeronasal sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed in the present study are available from the corresponding author upon reasonable request.

Change history

References

  • Begley CG, Lipkowitz S, Göbel V, Mahon KA, Bertness V, Green AR, Gough NM, Kirsch IR (1992) Molecular characterization of NSCL, a gene encoding a helix-loop-helix protein expressed in the developing nervous system. Proc Natl Acad Sci USA 89:38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Pérez N, Fornes O, Leung TY, Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A, Lenhard B, Vandepoele K, Wasserman WW, Parcy F, Mathelier A (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50(D1):D165–D173

    Article  CAS  PubMed  Google Scholar 

  • Cau E, Gradwohl G, Fode C, Guillemot F (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Chang I, Parrilla M (2016) Expression patterns of homeobox genes in the mouse vomeronasal organ at postnatal stages. Gene Expr Patterns 21:69–80

    Article  CAS  PubMed  Google Scholar 

  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:21931–21936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton RP, Lyons DB, Lomvardas S (2013) Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155:321–332

    Article  CAS  PubMed  Google Scholar 

  • Dalton RP (2018) Shared genetic requirements for ATF5 translation in the vomeronasal organ and main olfactory epithelium [version 1; peer review: 3 approved with reservations]. F1000Research 7:73. https://doi.org/10.12688/f1000research.13659.1

  • Hansen MB, Mitchelmore C, Kjaerulff KM, Rasmussen TE, Pedersen KM, Jensen NA (2002) Mouse Atf5: molecular cloning of two novel mRNAs, genomic organization, and odorant sensory neuron localization. Genomics 80:344–350

    Article  CAS  PubMed  Google Scholar 

  • Hatano M, Umemura M, Kimura N, Yamazaki T, Takeda H, Nakano H, Takahashi S, Takahashi Y (2013) The 5′-untranslated region regulates ATF5 mRNA stability via nonsense-mediated mRNA decay in response to environmental stress. FEBS J 280:4693–4707

    Article  CAS  PubMed  Google Scholar 

  • Hirota J, Mombaerts P (2004) The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. Proc Natl Acad Sci USA 101:8751–8755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota J, Omura M, Mombaerts P (2007) Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol Cell Neurosci 34:679–688

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Soria X, Levitin MO, Saraiva LR, Logan DW (2014) The olfactory transcriptomes of mice. PLoS Genet 10:e1004593

    Article  PubMed  PubMed Central  Google Scholar 

  • Katreddi RR, Forni PE (2021) Mechanisms underlying pre- and postnatal development of the vomeronasal organ. Cell Mol Life Sci 78:5069–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WY (2012) NeuroD1 is an upstream regulator of NSCL1. Biochem Biophys Res Commun 419:27–31

    Article  CAS  PubMed  Google Scholar 

  • Kolterud A, Alenius M, Carlsson L, Bohm S (2004) The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 131:5319–5326

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Braun T (2002) The neuronal basic helix-loop-helix transcription factor NSCL-1 is dispensable for normal neuronal development. Mol Cell Biol 22:792–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, Evans ZA, Kheradpour P, Mountoufaris G, Carey C, Barnea G, Kellis M, Lomvardas S (2011) An epigenetic signature for monoallelic olfactory receptor expression. Cell 145:555–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda A, Ajima R, Saga Y, Hirata T, Zhu Y (2022) Nhlh1 and Nhlh2, a global transcriptional mechanism regulating commissural axon projection via Robo3 activation. Preprint at https://doi.org/10.1101/2022.09.23.509112

  • Monahan K, Lomvardas S (2015) Monoallelic expression of olfactory receptors. Annu Rev Cell Dev Biol 31:721–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monahan K, Schieren I, Cheung J, Mumbey-Wafula A, Monuki ES, Lomvardas S (2017) Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons. Elife 6:e28620

    Article  PubMed  PubMed Central  Google Scholar 

  • Monahan K, Horta A, Lomvardas S (2019) LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch JN, Eddleston J, Leblond-Bourget N, Stanier P, Copp AJ (1999) Sequence and expression analysis of Nhlh1: a basic helix-loop-helix gene implicated in neurogenesis. Dev Genet 24:165–177

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Iida Y, Suzuki M, Aoki M, Umemura M, Takahashi S, Takahashi Y (2016) Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons. Cell Tissue Res 363:621–633

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Iida Y, Murase T, Oyama N, Umemura M, Takahashi S, Takahashi Y (2019) Co-expression of C/EBPγ and ATF5 in mouse vomeronasal sensory neurons during early postnatal development. Cell Tissue Res 378:427–440

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Kawai S, Ooki Y, Chiba T, Ishii C, Nozawa T, Utsuki H, Umemura M, Takahashi S, Takahashi Y (2021) Functional validation of epitope-tagged ATF5 knock-in mice generated by improved genome editing of oviductal nucleic acid delivery (i-GONAD). Cell Tissue Res 385:239–249

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–691

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schmid T, Boehm U, Braun T (2020) GnRH neurogenesis depends on embryonic pheromone receptor expression. Mol Cell Endocrinol 518:111030

    Article  CAS  PubMed  Google Scholar 

  • Shayya HJ, Kahiapo JK, Duffié R, Lehmann KS, Bashkirova L, Monahan K, Dalton RP, Gao J, Jiao S, Schieren I, Belluscio L, Lomvardas S (2022) ER stress transforms random olfactory receptor choice into axon targeting precision. Cell 185:3896-3912.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Tsuruga E, Yajima T, Takeda M (2003) Expression of bHLH transcription factors NSCL1 and NSCL2 in the mouse olfactory system. Chem Senses 28:603–608

    Article  CAS  PubMed  Google Scholar 

  • Umemura M, Tsunematsu K, Shimizu YI, Nakano H, Takahashi S, Higashiura Y, Okabe M, Takahashi Y (2015) Activating transcription factor 5 is required for mouse olfactory bulb development via interneuron. Biosci Biotechnol Biochem 79:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Wang SZ, Ou J, Zhu LJ, Green MR (2012) Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. Proc Natl Acad Sci USA 109:18589–18594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H, Kimura N, Hirose H, Takahashi S, Takahashi Y (2008) Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J Biol Chem 283:2543–2553

    Article  CAS  PubMed  Google Scholar 

  • Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E (2022) The unfolded protein responses in health, aging, and neurodegeneration: recent advances and future considerations. Front Mol Neurosci 15:831116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Titlow WB, Biecker SM, Stromberg AJ, McClintock TS (2016) Lhx2 determines odorant receptor expression frequency in mature olfactory sensory neurons. eNeuro 3:ENEURO.0230–16.2016

  • Zhou D, Palam LR, Jiang L, Narasimhan J, Staschke KA, Wek RC (2008) Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J Biol Chem 283:7064–7073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of Yuji Takahashi’s lab for their support on this project.

Author information

Authors and Affiliations

Authors

Contributions

HN conceived the study and designed the project with CI, ST, and YT. MU maintained the ATF5-knockout mouse line. CI, HN, RH, and YO performed the experiments and analyzed the data. CI and HN wrote the manuscript, and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Haruo Nakano.

Ethics declarations

Ethical approval

All mouse studies were approved by the Institutional Animal Experiment Committee of the university and were performed in accordance with institutional and governmental guidelines.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The authors regret that the version of the supplementary file that appears in the original article is incorrect. The correct supplementary figure is provided in the erratum article. The original article has been corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, C., Nakano, H., Higashiseto, R. et al. Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice. Cell Tissue Res 396, 85–94 (2024). https://doi.org/10.1007/s00441-024-03871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-024-03871-0

Keywords

Navigation