Skip to main content

Advertisement

Log in

Abnormal activation of RFC3, A YAP1/TEAD downstream target, promotes gastric cancer progression

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is a malignant tumor with a high mortality rate, and thus, it is necessary to explore molecular mechanisms underlying its progression. While replication factor C subunit 3 (RFC3) has been demonstrated to function as an oncogene in many cancers, its role in GC remains unclear.

Methods

Tumor tissues were collected from clinical GC patients, and the expression of RFC3 was analyzed. NCI-N87 and HGC-27 cells were infected with lentivirus sh-RFC3 to knock down RFC3 expression. RFC3 expression levels were determined, in addition to cell biological behaviors both in vitro and in vivo. The relationship between RFC3 and the YAP1/TEAD signaling pathway was detected by dual luciferase reporter assay.

Results

RFC3 was upregulated in GC tumor tissues. RFC3 knockdown inhibited cell proliferation, promoted cell apoptosis of GC cells, and suppressed cell migration and invasion. Moreover, depleted RFC3 suppressed tumor growth and metastasis in vivo. Mechanistically, the YAP1/TEAD axis activated RFC3 expression transcriptionally by binding to the RFC3 promoter.

Conclusions

RFC3 was transcriptional activated by the YAP1/TEAD signaling pathway, thus promoting GC progression. RFC3 may be a promising therapeutic target for GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Smyth EC, Nilsson M, Grabsch HI et al (2020) Gastric cancer. Lancet 396(10251):635–648. https://doi.org/10.1016/s0140-6736(20)31288-5

    Article  CAS  PubMed  Google Scholar 

  2. Digklia A, Wagner AD (2016) Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol 22(8):2403–2414. https://doi.org/10.3748/wjg.v22.i8.2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang C, Yuan W, Lai C et al (2020) EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 146(7):1937–1949. https://doi.org/10.1002/ijc.32609

    Article  CAS  PubMed  Google Scholar 

  4. Zanconato F, Forcato M, Battilana G et al (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227. https://doi.org/10.1038/ncb3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H, Li X, Jing X et al (2018) Hypoxia promotes maintenance of the chondrogenic phenotype in rat growth plate chondrocytes through the HIF-1α/YAP signaling pathway. Int J Mol Med 42(6):3181–3192. https://doi.org/10.3892/ijmm.2018.3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machado MV, Michelotti GA, Pereira TA et al (2015) Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J Hepatol 63(4):962–970. https://doi.org/10.1016/j.jhep.2015.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Zhou Y, Tang PMK et al (2019) Mechanotransduction and cytoskeleton remodeling shaping YAP1 in gastric tumorigenesis. Int J Mol Sci. https://doi.org/10.3390/ijms20071576

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu S, Liu Y, Zheng Y et al (2008) The TEAD/TEF family protein scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14(3):388–398. https://doi.org/10.1016/j.devcel.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Zhao B, Ye X, Yu J et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971. https://doi.org/10.1101/gad.1664408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou Y, Huang T, Zhang J et al (2017) TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene 36(47):6518–6530. https://doi.org/10.1038/onc.2017.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lockwood WW, Thu KL, Lin L et al (2012) Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma. Clin Cancer Res 18(7):1936–1946. https://doi.org/10.1158/1078-0432.Ccr-11-1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen H, Cai M, Zhao S et al (2014) Overexpression of RFC3 is correlated with ovarian tumor development and poor prognosis. Tumour Biol 35(10):10259–10266. https://doi.org/10.1007/s13277-014-2216-2

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Park J, Feng A et al (2020) YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Nat Commun 11(1):1472. https://doi.org/10.1038/s41467-020-15301-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu S, Zhang Y, Li Q et al (2019) CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis 10(12):949. https://doi.org/10.1038/s41419-019-2168-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Z, Li J, Ding Y et al (2022) USP49 mediates tumor progression and poor prognosis through a YAP1-dependent feedback loop in gastric cancer. Oncogene 41(18):2555–2570. https://doi.org/10.1038/s41388-022-02267-0

    Article  CAS  PubMed  Google Scholar 

  16. Qin Y, Pei Z, Feng Z et al (2021) Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation. Front Cell Dev Biol 9:751593. https://doi.org/10.3389/fcell.2021.751593

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lv X, He C, Huang C et al (2020) Reprogramming of ovarian granulosa cells by YAP1 leads to development of high-grade cancer with mesenchymal lineage and serous features. Sci Bull (Beijing) 65(15):1281–1296. https://doi.org/10.1016/j.scib.2020.03.040

    Article  CAS  PubMed  Google Scholar 

  18. Hasegawa T, Sugihara T, Hoshino Y et al (2021) Photosensitizer verteporfin inhibits the growth of YAP- and TAZ-dominant gastric cancer cells by suppressing the anti-apoptotic protein survivin in a light-independent manner. Oncol Lett 22(4):703. https://doi.org/10.3892/ol.2021.12964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luis M, Tavares A, Carvalho LS et al (2013) Personalizing therapies for gastric cancer: molecular mechanisms and novel targeted therapies. World J Gastroenterol 19(38):6383–6397. https://doi.org/10.3748/wjg.v19.i38.6383

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hatfield KJ, Reikvam H, Bruserud Ø (2014) Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells. Expert Opin Ther Targets 18(11):1237–1251. https://doi.org/10.1517/14728222.2014.957671

    Article  CAS  PubMed  Google Scholar 

  21. Shen H, Xu J, Zhao S et al (2015) ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation. Int J Clin Exp Pathol 8(8):8968–8975

    PubMed  PubMed Central  Google Scholar 

  22. Yao Z, Hu K, Huang H et al (2015) shRNA-mediated silencing of the RFC3 gene suppresses hepatocellular carcinoma cell proliferation. Int J Mol Med 36(5):1393–1399. https://doi.org/10.3892/ijmm.2015.2350

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Ding Y, Ye N et al (2016) Direct activation of bax protein for cancer therapy. Med Res Rev 36(2):313–341. https://doi.org/10.1002/med.21379

    Article  CAS  PubMed  Google Scholar 

  24. Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008722

    Article  PubMed  PubMed Central  Google Scholar 

  25. Notarbartolo M, Cervello M, Poma P et al (2004) Expression of the IAPs in multidrug resistant tumor cells. Oncol Rep 11(1):133–136

    CAS  PubMed  Google Scholar 

  26. Tong QS, Zheng LD, Wang L et al (2005) Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther 12(5):509–514. https://doi.org/10.1038/sj.cgt.7700813

    Article  CAS  PubMed  Google Scholar 

  27. Oliver TG, Grasfeder LL, Carroll AL et al (2003) Transcriptional profiling of the sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 100(12):7331–7336. https://doi.org/10.1073/pnas.0832317100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spurgers KB, Gold DL, Coombes KR et al (2006) Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 281(35):25134–25142. https://doi.org/10.1074/jbc.M513901200

    Article  CAS  PubMed  Google Scholar 

  29. Mac SM, D’Cunha CA, Farnham PJ (2000) Direct recruitment of N-myc to target gene promoters. Mol Carcinog 29(2):76–86

    Article  CAS  PubMed  Google Scholar 

  30. Kang W, Cheng AS, Yu J et al (2016) Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol 22(3):1279–1288. https://doi.org/10.3748/wjg.v22.i3.1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in conceptualization and methodology; ZG performed formal analysis and investigation, and writing––original draft preparation; LG performed writing––review and editing, resources, and supervision.

Corresponding author

Correspondence to Lin Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Shengjing Hospital of China Medical University with Approval No.2021PS644K for clinical specimen collection and Approval No. 2021PS645K for animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Guo, L. Abnormal activation of RFC3, A YAP1/TEAD downstream target, promotes gastric cancer progression. Int J Clin Oncol 29, 442–455 (2024). https://doi.org/10.1007/s10147-024-02478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-024-02478-3

Keywords

Navigation