Skip to main content
Log in

Eicosanoids and biogenic monoamines modulate the nodulation process and phenoloxidase activity in flesh flies

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Insects have innate immunity comprising cellular and humoral defense reactions. Nodulation is a predominant cellular immune response to bacterial infections and the prophenoloxidase (PPO)-activating system acts in nodulation with a melanization reaction that darkens the nodules and produces reactive oxygen species that probably kill the bacteria. Although several eicosanoid actions have been reported in insect immune functions, these actions are relatively understudied among dipterans. We addressed this gap by exploring nodulation reactions to bacterial infections in the 3rd instar of the flesh fly Thomsonea argyrostoma. The Gram-positive bacterium, Micrococcus luteus, was injected either alone or coupled with eicosanoids biosynthesis inhibitors (EBIs). Nodulation exhibits a maximum at 24 h post injection. At zero time of control larvae, a constitutive level of phenoloxidase (PO) was found in plasma. Intrahemocoelic injection of M. luteus induces biosynthesis of PPO in hemocytes, and also its release into and activation in plasma via M. luteus challenge. EBIs suppress nodulation and PPO content of both hemocytes and plasma, but not PO content of plasma. The results imply the mediation of eicosanoids in PPO biosynthesis in hemocytes and its release, but not its activation in plasma. The injection of biogenic monoamines Octopamine (OA) and 5-hydroxytryptamine (5-HT) elevates nodulation and PPO biosynthesis and its activation in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data related to this study are present in the paper.

Abbreviations

5-HT:

5-hydroxytryptamine

BSA:

Bovine serum albumin

COXs:

Cyclooxygenases

Dex:

Dexamethazone

EBIs:

Eicosanoid biosynthesis inhibitors

hPI:

Hours post-injection

Ibu:

Ibuprofen

OA:

Octopamine

PBS:

Phosphate buffered saline

Phe:

Phenidone

PO:

Phenoloxidase

PPO:

Prophenoloxidase

References

  • An C, Zhang M, Chu Y, Zhao Z (2013) Serine protease MP2 activates prophenoloxidase in the melanization immune response of Drosophila melanogaster. PLoS ONE 8(11):e79533

    PubMed  PubMed Central  Google Scholar 

  • Ashida M, Brey PT (1997) Recent advances in research on the insect prophenoloxidase cascade. In: Brey PT, Hultmark DE (eds) Molecular mechanisms of immune responses in insects. Chapman and Hall, London, UK, pp 133–172

    Google Scholar 

  • Axelrod J, Saavedra JM (1977) Octopamine. Nature 265:501–504

    CAS  Google Scholar 

  • Baines D, Downer RGH (1994) Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol triphosphate. Arch Insect Biochem Physiol 26:249–261

    CAS  PubMed  Google Scholar 

  • Baines D, Desantis T, Downer RGH (1992) Octopamine and 5-hydroxy trypamine enhance the phagocytic and nodule formation activities of cockroach Periplaneta americana hemocytes. J Insect Physiol 11:905–914

    Google Scholar 

  • Barrett FM (1991) Phenoloxidases and the integument. In: Binnington K, Retnakaran R (eds) Physiology of the insect epidermis. CSIRO, Australia, pp 195–212

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brey PT (1994) The impact of stress on insect immunity. Bull De I’Institut Pasteur 92:101e118

    Google Scholar 

  • Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, Grimaldi A, Casartelli M, Tettamanti G (2021) Insights into the immune response of the black soldier fly larvae to bacteria. Front Immunol 12:745160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G (2023) Morphofunctional characterization of hemocytes in black soldier fly larvae. Insect Sci 30:912–932

    CAS  PubMed  Google Scholar 

  • Büyükgüzel E (2012) Eicosanoids mediate cellular immune reaction to viral infection in adult Pimpla turionellae. Arch Insect Biochem Physiol 81:20–33

    PubMed  Google Scholar 

  • Büyükgüzel E, Tunaz H, Stanley D, Büyükgüzel K (2007) Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J Insect Physiol 53:99–105

    PubMed  Google Scholar 

  • Carton Y, Frey F, Stanley DW, Vass E, Nappi AJ (2002) Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J Parasitol 288:405–407

    Google Scholar 

  • Cerenius L, Söderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    CAS  PubMed  Google Scholar 

  • Chase MR, Raina K, Bruno J, Sugumaran M (2000) Purification, characterization and molecular cloning of prophenoloxidase from Sarcaphaga bullata. Insect Biochem Mol Biol 30:953–967

    CAS  PubMed  Google Scholar 

  • Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199

    CAS  PubMed  Google Scholar 

  • Dean P, Gadsden JC, Richards EH, Edwards JP, Charnley AK, Reynolds SE (2002) Modulation by eicosanoid of immune responses by the insect Manduca sexta to the pathogenic fungus metarhizium anisopliae. J Invertebr Pathol 79:93–101

    CAS  PubMed  Google Scholar 

  • Diehl-Jones WL, Mandato CA, Whent G, Downer RGH (1996) Mono-aminergic regulation of hemocyte activity. J Insect Physiol 42:13–19

    CAS  Google Scholar 

  • Dunphy GB, Downer RGH (1994) Octopamine, a modulator of the haemocytic nodulation response of non-immune Galleria mellonella larvae. J Insect Physiol 40:267–272

    CAS  Google Scholar 

  • Durmus Y, Büyükgüzel E, Terzi B, Tunaz H, Stanley D, Büyükgüzel K (2008) Eicosanoids mediate melanotic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turionellae. J Insect Physiol 54:17–24

    CAS  PubMed  Google Scholar 

  • Durrant HJ, Ratctiffe NA, Hipkin CR, Aspan A, Söderhäll K (1993) Purification of the prophenol oxidase enzyme from haemocytes of the cockroach Blaberus discoidalis. Biochem J 28:87–91

    Google Scholar 

  • Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A (2021) Haemocyte-mediated immunity in insects: cells, processes and associated components in the fight against pathogens and parasites. Immunology 164(3):401–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans PD (1985) Octopamine. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol 2. Pergamon, Oxford, UK, pp 499–530

    Google Scholar 

  • Feldhaar H, Gross R (2008) Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect 10:1082–1088

    CAS  PubMed  Google Scholar 

  • Franssens V, Simonet G, Bronckaers A, Claeys I, De Loof A, Broeck JV (2005) Eicosanoids mediate the laminarin-induced nodulation response in larvae of the flesh fly, Neobellieria bullata. Arch Insect Biochem Physiol 59:32–41

    CAS  PubMed  Google Scholar 

  • Garcia ES, Machado EM, Azambuja P (2004) Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Exp Parasitol 107:31–38

    PubMed  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    CAS  PubMed  Google Scholar 

  • Goldsworthy G, Chandrakant S, Opoku-Ware K (2003) Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide. J Insect Physiol 49:795–803

    CAS  PubMed  Google Scholar 

  • Gole JWD, Downer RGH, Sohi SS (1982) Octopamine sensitive adenylate cyclase in haemocytes of the forest tent caterpillar, Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae). Can J Zool 60:825–829

    CAS  Google Scholar 

  • Gorman MJ, An C, Kanost MR (2007) Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochem Mol Biol 37:1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Wu SF, Li XH, Adamo SA, Ye GY (2012) The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Brain Behav Immun 26:942–950

    CAS  PubMed  Google Scholar 

  • Ji C, Wang Y, Guo X, Hartson S, Jiang H (2004) A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta. J Biol Chem 279:34101–34106

    CAS  PubMed  Google Scholar 

  • Jiang H, Wang Y, Ma C, Kanost MR (1997) Subunit composition of prophenol oxidase from Manduca sexta: molecular cloning of subunit proPO-p1. Insect Biochem Mol Biol 27:835–850

    CAS  PubMed  Google Scholar 

  • Jiang H, Wang Y, Yu XQ, Kanost MR (2003a) Prophenoloxidase activating proteinase 2 from hemolymph of Manduca sexta. J Biol Chem 278:3552–3561

    CAS  PubMed  Google Scholar 

  • Jiang H, Wang Y, Yu XQ, Zhu Y, Kanost MR (2003b) Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem Mol Biol 33:1049–1060

    CAS  PubMed  Google Scholar 

  • Jiang Z, Zamaniam-Daryoush M, Nie H, Silva AM, Williams BR, Li X (2003c) Poly(I-C)-induced toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 278:16713–16719

    CAS  PubMed  Google Scholar 

  • Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonozation. Immunbiology 211:213–236

    CAS  Google Scholar 

  • Kanost MR, Gorman MJ (2008) Phenoloxidase in insect immunity. In: Beckage N (ed) Insect immunology. Academic Press/Elsevier, San Diego, USA, pp 69–96

    Google Scholar 

  • Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105

    CAS  PubMed  Google Scholar 

  • Kavanagh K, Reeves EP (2007) Insect and mammalian innate immune responses are much alike. Microbe 2:596–599

    Google Scholar 

  • Kim GS, Kim Y (2010) Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Rac1 signal in Spodoptera exigua. J Insect Physiol 56:559–566

    CAS  PubMed  Google Scholar 

  • Kim GS, Nalini M, Kim Y, Lee DW (2009) Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch Insect Biochem Physiol 70:162–176

    CAS  PubMed  Google Scholar 

  • Lai SC, Chen CC, Hou RF (2002) Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 39:266–274

    CAS  PubMed  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    CAS  PubMed  Google Scholar 

  • Lehrer AZ (2006) Liste des Sarcophaginae et Paramacronychiinae du Proche Orient, identifiés dans les collections de TAU (Diptera, Sarcophagidae).Fragmenta Dipterologica 3:14–22

    Google Scholar 

  • Leonard C, Söderhäll K, Ratcliffe NA (1985) Studies on prophenoloxidase and protease activity of Blaberus craniifer haemocytes. Insect Biochem 15:803–810

    CAS  Google Scholar 

  • Li Y, Wang Y, Jiang H, Deng J (2009) Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Proc Natl Acad Sci U S A 106:17002–17006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lord JC, Anderson S, Stanley DW (2002) Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for the lipoxygenase pathway. Arch Insect Biochem Physiol 51:46–54

    CAS  PubMed  Google Scholar 

  • Mandato CA, Diehl-Jones WL, Moore SJ, Downer RGH (1997) The effects of eicosanoid biosynthesis inhibitors on prephenoloxidase activation, phagocytosis and cell spreading in Galleria mellonella. J Insect Physiol 43:1–8

    CAS  PubMed  Google Scholar 

  • Marin D, Dunphy GB, Mandato CA (2005) Cyclic AMP affects the haemocyte responses of larval Galleria mellonella to selected antigens. J Insect Physiol 51:575–586

    CAS  PubMed  Google Scholar 

  • Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci U S A 91:12418–12422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed AA, Ali MM, Dorrah MA, Bassal TTM (2018) Mediation of inducible nitric oxide and immune-reactive lysozymes biosynthesis by eicosanoid and biogenic amines in flesh flies. Int J Trop Insect Sci 38:93–104

    Google Scholar 

  • Morishima I, Yamano Y, Inoue K, Matsuo N (1997) Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett 419:83–86

    CAS  PubMed  Google Scholar 

  • Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459

    CAS  PubMed  Google Scholar 

  • Nappi AJ, Vass E (2001) Cytotoxic reactions associated with insect immunity. Adv Exp Med Biol 484:329–348

    CAS  PubMed  Google Scholar 

  • Orchard I (1982) Octopamine in insects: neurotransmitter, neurohormone, and neuromodulator. Can J Zool 60:659–669

    CAS  Google Scholar 

  • Orr GL, Gole JWD, Downer RGH (1985) Characterization of an octopamine-sensitive adenylate cyclase in hemocyte membrane fragments of the American cockroach Periplaneta americana L. Insect Biochem 15:695–701

    CAS  Google Scholar 

  • Pape T (1996) Catalogue of the Sarcophagidae of the world (Insecta: Diptera). Mem Entomol Int 8:1–558

    Google Scholar 

  • Park J, Stanley D, Kim Y (2013) Rac1 mediates cytokine-stimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J Insect Physiol 59:682–689

    CAS  PubMed  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    CAS  PubMed  Google Scholar 

  • Satyavathi VV, Minz A, Nagaraju J (2014) Nodulation: an unexplored cellular defence mechanism. Cell Signal 26:1753–1763

    CAS  PubMed  Google Scholar 

  • Schmidt O, Theopold U, Strand MR (2001) Innate immunity and evasion by insect parasitoids. BioEssays 23:344–351

    CAS  PubMed  Google Scholar 

  • Schmidt O, Theopold U, Beckage N (2008) Insect and vertebrate immununity: key similarities versus differences. In: Beckage N (ed) Insect immunology. Academic, San Diego, USA, pp 1–24

    Google Scholar 

  • Shrestha S, Kim Y (2008) Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem Mol Biol 38:99–112

    CAS  PubMed  Google Scholar 

  • Shrestha S, Kim Y (2009a) Oenocytoid cell lysis to release prophenoloxidase is induced by eicosanoid via protein kinase C. J Asia Pac Entomol 12:301–305

    CAS  Google Scholar 

  • Shrestha S, Kim Y (2009b) Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci Biotechnol Biochem 73:2077–2084

    CAS  PubMed  Google Scholar 

  • Shrestha S, Stanley D, Kim Y (2011) PGE(2) induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J Insect Physiol 57:1568–1576

    CAS  PubMed  Google Scholar 

  • Stanley DW, Kim Y (2014) Eicosanoid signaling in insects: from discovery to plant protection. Crit Rev Plant Sci 33:20–63

    CAS  Google Scholar 

  • Stanley D, Kim Y (2019) Prostaglandins and other Eicosanoids in insects: Biosynthesis and Biological actions. Front Physiol 9:1927

    PubMed  PubMed Central  Google Scholar 

  • Stanley D, Miller JS (2006) Eicosanoid actions in insect cellular immune functions. Entomol Exp Appl 119:1–13

    CAS  Google Scholar 

  • Stanley D, Shapiro M (2007) Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantriadispar to nucleopolyhedrovirus LdMNPV. J Invertebr Pathol 95:119–124

    CAS  PubMed  Google Scholar 

  • Stanley DW, Miller JS, Tunaz H (2009) Eicosanoid actions in insect immunity. J Innate Immun 1:282–290

    CAS  PubMed  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    CAS  Google Scholar 

  • Sugumaran H (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2–9

    CAS  PubMed  Google Scholar 

  • Sugumaran M, Kanost M (1993) Regulation of insect hemolymph phenoloxidases. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens. Academic, San Diego, USA, pp 317–342

    Google Scholar 

  • Tojo S, Naganuma F, Arakawa K, Yokoo S (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46:1129–1135

    CAS  PubMed  Google Scholar 

  • Tokura A, Fu GS, Sakamoto M, Endo H, Tanaka S, Kikuta S, Tabunoki H, Sato R (2014) Factors functioning in nodule melanization of insects and their mechanisms of accumulation in nodules. J Insect Physiol 60:40–49

    CAS  PubMed  Google Scholar 

  • Tunaz H (2006) Influence of eicosanoids in nodulation reactions against bacteria, Serratia marcescens in larvae of Leptinotarsa decemlineata. KSU Fen Mühendislik Dergisi 9:159–163

    Google Scholar 

  • Wang Y, Jiang H (2004) Prophenoloxidase (proPO) activation in Manduca sexta: an analysis of molecular interactions among proPO, proPO-activating proteinase-3, and a cofactor. Insect Biochem Mol Biol 34:731–742

    CAS  PubMed  Google Scholar 

  • Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. J Immunol 178:4711–4716

    CAS  PubMed  Google Scholar 

  • Williams M, Wiklund M-L, Wikman S, Hultmark D (2006) Rac1 signalling in the Drosophila larval cellular immune response. J Cell Sci 119:2015–2024

    CAS  PubMed  Google Scholar 

  • Zhang W, Tettamanti G, Bassal T, Heryanto C, Eleftherianos I, Mohamed A (2021) Regulators and signalling in insect antimicrobial innate immunity: functional molecules and cellular pathways. Cell Signal 83:110003

    CAS  PubMed  Google Scholar 

  • Zhao F, Chen B, Wang Y, Zhu F, Lei CL (2009a) Eicosanoids mediate nodulation reactions to bacterial Escherichia coli K 12 infections in larvae of the oriental blowfly, Chrysomya megacephala. Insect Sci 16:387–392

    CAS  Google Scholar 

  • Zhao F, Stanley D, Wang Y, Zhu F, Lei CL (2009b) Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomya megacephala. J Insect Physiol 55:192–196

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr Satyavathi Valluri (Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India) for critical reading of the manuscript. We express our gratitude to the three anonymous reviewers for their meticulous review of our manuscript and their numerous perceptive remarks and recommendations.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TTMB and MAD conceived and designed research. MMA collected and reared experimental insects. MMA conducted experiments. AAA, RKA, and MSA analyzed data. TTMB, RKA, and MAD wrote and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Abdulrhman A. Almadiy or Taha T. M. Bassal.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorrah, M.A., Ali, M.M., Al‑Akeel, R.K. et al. Eicosanoids and biogenic monoamines modulate the nodulation process and phenoloxidase activity in flesh flies. Int J Trop Insect Sci 44, 711–722 (2024). https://doi.org/10.1007/s42690-024-01196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-024-01196-7

Keywords

Navigation