Skip to main content
Log in

Understanding the effect of differential stress and fracture geometry on blast-induced damage in crystalline rocks: a numerical approach

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This study employs numerical simulations to scrutinize the influence of pre-existing fractures and in situ stress states on blast-induced crack propagation in fractured rocks. The geomechanical behavior of fractured rocks is simulated via a particle-based discrete element model with particles constructed and assembled by the Voronoi tessellation scheme based on the grain-size distribution of actual rock samples (specifically, Beishan granite), which captures solid vibrations under dynamic loading and realistically responds to crack growth and fracture displacement. The reliability of the model is also validated using Snell’s law and fracture mechanics. Based on the model, the effects of stress states and fracture configurations (such as single isolated fracture and two interacting fractures) on damage evolution are examined. It was observed that when the differential stress is aligned (or perpendicular) with the blasting wave, it amplifies (or reduces) the damaging effect of the blasting wave on the rock mass in most instances. The effect of the differential stress on the blasting wave is similar to that of an increase (or reduction) in the amplitude of the blasting wave. When the differential stress exceeds the tensile cracking stress, rock damage sharply escalates due to the generation of a plastic region, regardless of the angle between the blasting wave and differential stress. Meanwhile, a study of two interacting fractures reveals that differences in fracture geometry lead to different stress concentration and shadow zones in the specimen. This changes the location and extent of crack development and ultimately affects the strength of the rock. The findings from our simulations provide critical insights for understanding and characterizing excavation damage zones around underground excavations in fractured crystalline rock obtained by drilling and blasting methods and also provide safety predictions for constructed neighboring structures under dynamic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219. https://doi.org/10.1016/S0013-7944(00)00009-6

    Article  Google Scholar 

  2. Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888. https://doi.org/10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  3. Bock S, Prusek S (2015) Numerical study of pressure on dams in a backfilled mining shaft based on PFC3D code. Comput Geotech 66:230–244. https://doi.org/10.1016/j.compgeo.2015.02.005

    Article  Google Scholar 

  4. Brace WF, Byerlee JD (1966) Recent experimental studies of brittle fracture of rocks. In: 8th U.S. Symposium on rock mechanics, USRMS 1966. OnePetro, pp 58–81.

  5. Cao P, Liu T, Pu C, Lin H (2015) Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol 187:113–121. https://doi.org/10.1016/j.enggeo.2014.12.010

    Article  Google Scholar 

  6. Cao RH, Cao P, Lin H, Pu CZ, Ou K (2016) Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech Rock Eng 49:763–783. https://doi.org/10.1007/s00603-015-0779-x

    Article  ADS  Google Scholar 

  7. Chao Z, Fowmes G (2021) Modified stress and temperature-controlled direct shear apparatus on soil-geosynthetics interfaces. Geotext Geomembr. https://doi.org/10.1016/j.geotexmem.2020.12.011

    Article  Google Scholar 

  8. Chen X, Shi C, Zhang Y-L, Yang J-X (2021) Numerical and experimental study on strain rate effect of ordinary concrete under low strain rate. KSCE J Civ Eng 25:1790–1805. https://doi.org/10.1007/s12205-021-0969-x

    Article  Google Scholar 

  9. Chen Y, Lin H, Xie S, Ding X, He D, Yong W, Gao F (2022) Effect of joint microcharacteristics on macroshear behavior of single-bolted rock joints by the numerical modelling with PFC. Environ Earth Sci 81:276. https://doi.org/10.1007/s12665-022-10411-y

    Article  ADS  Google Scholar 

  10. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44:997–1010. https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  11. Deng XF, Zhu JB, Chen SG, Zhao ZY, Zhou YX, Zhao J (2014) Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn Undergr Sp Technol 43:88–100. https://doi.org/10.1016/j.tust.2014.04.004

    Article  Google Scholar 

  12. Di Q, Fu C, An Z, Wang R, Wang G, Wang M, Qi S, Liang P (2020) An application of CSAMT for detecting weak geological structures near the deeply buried long tunnel of the Shijiazhuang-Taiyuan passenger railway line in the Taihang Mountains. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105517

    Article  Google Scholar 

  13. Donzé FV, Bouchez J, Magnier SA (1997) Modeling fractures in rock blasting. Int J Rock Mech Min Sci 34:1153–1163. https://doi.org/10.1016/S1365-1609(97)80068-8

    Article  Google Scholar 

  14. Fishman YA (2009) Stability of concrete retaining structures and their interface with rock foundations. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2009.05.006

    Article  Google Scholar 

  15. He C, Yang J, Yu Q (2018) Laboratory study on the dynamic response of rock under blast loading with active confining pressure. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2018.01.011

    Article  Google Scholar 

  16. Huang J, Chen G, Zhao Y, Ren W (2012) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics. https://doi.org/10.1016/0040-1951(90)90142-U

    Article  Google Scholar 

  17. Huang L, He R, Yang Z, Tan P, Chen W, Li X, Cao A (2023) Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation. Eng Fract Mech 278:109020. https://doi.org/10.1016/j.engfracmech.2022.109020

    Article  Google Scholar 

  18. Ingraffea AR, Heuze FE (1980) Finite element models for rock fracture mechanics. Int J Numer Anal Methods Geomech 4:25–43

    Article  Google Scholar 

  19. Itasca Consulting Group, Inc. (2021) PFC suite—particle flow code in two and three dimensions (Version 7.0). Minneapolis, Itasca

  20. Jiefan H, Ganglin C, Yonghong Z, Ren W (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175:269–284. https://doi.org/10.1016/0040-1951(90)90142-U

    Article  ADS  Google Scholar 

  21. Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40:283–353. https://doi.org/10.1016/S1365-1609(03)00013-3

    Article  Google Scholar 

  22. Ju Y, Wang Y, Su C, Zhang D, Ren Z (2019) Numerical analysis of the dynamic evolution of mining-induced stresses and fractures in multilayered rock strata using continuum-based discrete element methods. Int J Rock Mech Min Sci 113:191–210. https://doi.org/10.1016/j.ijrmms.2018.11.014

    Article  Google Scholar 

  23. Kolsky H (1953) Nature 707:3651

  24. Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999. https://doi.org/10.1016/j.ijsolstr.2010.12.001

    Article  CAS  Google Scholar 

  25. Lei Q, Latham JP, Xiang J, Tsang CF (2017) Role of natural fractures in damage evolution around tunnel excavation in fractured rocks. Eng Geol. https://doi.org/10.1016/j.enggeo.2017.10.013

    Article  Google Scholar 

  26. Li G, Bodahi F, He T, Luo F, Duan S, Li M (2022) Sensitivity analysis of macroscopic mechanical behavior to microscopic parameters based on PFC simulation. Geotech Geol Eng 40:3633–3641. https://doi.org/10.1007/s10706-022-02118-5

    Article  Google Scholar 

  27. Li J, Ma G (2010) Analysis of blast wave interaction with a rock joint. Rock Mech Rock Eng 43:777–787. https://doi.org/10.1007/s00603-009-0062-0

    Article  ADS  Google Scholar 

  28. Li T, Zhang L, Gong W, Tang H (2023) Cyclic freezing-thawing induced rock strength degradation, crack evolution, heave and settlement accounted for by a DEM model. Int J Rock Mech Min Sci 170:105498. https://doi.org/10.1016/j.ijrmms.2023.105498

    Article  Google Scholar 

  29. Li W, Chong S, Cong Z (2023) Numerical study on the effect of grain size on rock dynamic tensile properties using PFC-GBM. Comp Part Mech. https://doi.org/10.1007/s40571-023-00634-6

    Article  Google Scholar 

  30. Li XF, Li HB, Liu LW, Liu YQ, Ju MH, Zhao J (2020) Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int J Rock Mech Min Sci 127:104219. https://doi.org/10.1016/J.IJRMMS.2020.104219

    Article  Google Scholar 

  31. Li Z, Li J, Li H (2021) Effect of concave terrain on explosion-induced ground motion. Int J Rock Mech Min Sci 148:104948. https://doi.org/10.1016/j.ijrmms.2021.104948

    Article  Google Scholar 

  32. Liu D, Shi X, Zhang X, Wang B, Tang T, Han W (2018) Hydraulic fracturing test with prefabricated crack on anisotropic shale: laboratory testing and numerical simulation. J Pet Sci Eng 168:409–418. https://doi.org/10.1016/j.petrol.2018.04.059

    Article  ADS  CAS  Google Scholar 

  33. Liu K, Hao H, Li X (2017) Numerical analysis of the stability of abandoned cavities in bench blasting. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2016.12.008

    Article  Google Scholar 

  34. Luo F, Diao Y, Wu D, Xu P, Guo Y, Li M (2022) Macro-meso failure study on the mechanism of central-boundary fractured rock masses. Indian Geotech J 52:301–314. https://doi.org/10.1007/s40098-021-00573-0

    Article  Google Scholar 

  35. Mehranpour MH, Kulatilake PHSW (2017) Improvements for the smooth joint contact model of the particle flow code and its applications. Comput Geotech 87:163–177. https://doi.org/10.1016/j.compgeo.2017.02.012

    Article  Google Scholar 

  36. Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46:819–829. https://doi.org/10.1016/j.ijrmms.2009.02.006

    Article  Google Scholar 

  37. Park JW, Song JJ (2009) Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Min Sci 46:1315–1328. https://doi.org/10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  38. Pierce M, Cundall P, Potyondy D, Mas Ivars D (2007) A synthetic rock mass model for jointed rock. In: Proceedings of the 1st Canada-US rock mechanics symposium rock mechanics. Meeting society challenges demands 1:341–349. https://doi.org/10.1201/noe0415444019-c4

  39. Potyondy DO (2010) A grain-based model for rock: Approaching the true microstructure. Bergmek i Nord 2010 Rock Mech Nord Ctries, pp 225–234

  40. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  41. Shang R, Wang L, Liu H, Zhu C, Li S, Chen L (2023) The influence of dip angle of rock bridge on mechanical properties and fracture characteristics of fractured coal body at three-dimensional scale. Rock Mech Rock Eng 56:8927–8946. https://doi.org/10.1007/s00603-023-03523-9

    Article  ADS  Google Scholar 

  42. Shcn B, Stcphansson O, Einstein HH, Ghahrcman B (1995) Coalescence of fractures under shear stresses in experiments. J Geophys Res. https://doi.org/10.1029/95JB00040

    Article  Google Scholar 

  43. Snelling PE, Godin L, McKinnon SD (2013) The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2012.10.005

    Article  Google Scholar 

  44. Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. Int J Rock Mech Min Sci 38:925–939. https://doi.org/10.1016/S1365-1609(01)00065-X

    Article  Google Scholar 

  45. Wang B, Li H, Shao Z, Chen S, Li X (2021) Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method. Comput Geotech 140:104445. https://doi.org/10.1016/j.compgeo.2021.104445

    Article  Google Scholar 

  46. Wang M, Lu Z, Wan W, Zhao Y (2021) A calibration framework for the microparameters of the DEM model using the improved PSO algorithm. Adv Powder Technol 32:358–369. https://doi.org/10.1016/j.apt.2020.12.015

    Article  Google Scholar 

  47. Wang M, Lu Z, Zhao Y, Wan W (2023) Peak strength, coalescence and failure processes of rock-like materials containing preexisting joints and circular holes under uniaxial compression: experimental and numerical study. Theoret Appl Fract Mech 125:103898. https://doi.org/10.1016/j.tafmec.2023.103898

    Article  Google Scholar 

  48. Wang YH, Leung SC (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45:29–44. https://doi.org/10.1139/T07-070

    Article  Google Scholar 

  49. Wang ZL, Konietzky H (2009) Modelling of blast-induced fractures in jointed rock masses. Eng Fract Mech 76:1945–1955. https://doi.org/10.1016/j.engfracmech.2009.05.004

    Article  Google Scholar 

  50. Wang ZL, Konietzky H, Shen RF (2009) Coupled finite element and discrete element method for underground blast in faulted rock masses. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2008.11.002

    Article  Google Scholar 

  51. Wasantha PLP, Ranjith PG, Shao SS (2014) Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission. Ultrasonics. https://doi.org/10.1016/j.ultras.2013.06.015

    Article  PubMed  Google Scholar 

  52. Wei M, Dai F, Liu Y, Jiang R (2023) A fracture model for assessing tensile mode crack growth resistance of rocks. J Rock Mech Geotech Eng 15:395–411. https://doi.org/10.1016/j.jrmge.2022.03.001

    Article  Google Scholar 

  53. Wei MD, Dai F, Xu NW, Zhao T (2016) Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks. Eng Fract Mech 168:174–189. https://doi.org/10.1016/j.engfracmech.2016.10.004

    Article  Google Scholar 

  54. Wu Z, Ma L, Fan L (2018) Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Eng Fract Mech 200:355–374. https://doi.org/10.1016/j.engfracmech.2018.08.015

    Article  Google Scholar 

  55. Xie LX, Lu WB, Zhang QB, Jiang QH, Chen M, Zhao J (2017) Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn Undergr Sp Technol. https://doi.org/10.1016/j.tust.2017.03.009

    Article  Google Scholar 

  56. Xie S, Lin H, Duan H, Liu H, Liu B (2023) Numerical study on cracking behavior and fracture failure mechanism of fractured rocks under shear loading. Comp Part Mech. https://doi.org/10.1007/s40571-023-00660-4

    Article  Google Scholar 

  57. Xiong L, Chen H, Yuan H, Xu Z (2023) Triaxial creep test and PFC numerical simulation of rock-like materials with cracks. Arab J Geosci 16:613. https://doi.org/10.1007/s12517-023-11717-2

    Article  Google Scholar 

  58. Yang JX, Shi C, Wang S, Zhang C (2019) Numerical simulation verification of blasting failure effect in rock mass with particle flow code. J Disaster Prev Mitig Eng 39:217–226. https://doi.org/10.13409/j.cnki.jdpme.2019.02.004

    Article  Google Scholar 

  59. Yang L, Yang R, Qu G, Zhang Y (2014) Caustic study on blast-induced wing crack behaviors in dynamic-static superimposed stress field. Int J Min Sci Technol. https://doi.org/10.1016/j.ijmst.2014.05.001

    Article  Google Scholar 

  60. Yang P, Lei Q, Xiang J, Latham JP, Pain C (2020) Numerical simulation of blasting in confined fractured rocks using an immersed-body fluid-solid interaction model. Tunn Undergr Sp Technol 98:103352. https://doi.org/10.1016/j.tust.2020.103352

    Article  Google Scholar 

  61. Yang R, Ding C, Yang L, Chen C (2018) Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions. Tunn Undergr Sp Technol. https://doi.org/10.1016/j.tust.2018.01.017

    Article  Google Scholar 

  62. Yang X, Kulatilake PHSW, Jing H, Yang S (2015) Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results. Tunn Undergr Sp Technol 50:129–142. https://doi.org/10.1016/j.tust.2015.07.006

    Article  Google Scholar 

  63. Yang XX, Kulatilake PHSW (2019) Effect of joint micro mechanical parameters on a jointed rock block behavior adjacent to an underground excavation: a particle flow approach. Geotech Geol Eng 37:431–453. https://doi.org/10.1007/s10706-018-0621-9

    Article  Google Scholar 

  64. Yang Z, Cai H, Dai M, Wang T, Li M (2023) Mechanical behavior and rock breaking mechanism of shield hob based on particle flow code (PFC) method. Geotech Geol Eng 41:353–370. https://doi.org/10.1007/s10706-022-02286-4

    Article  Google Scholar 

  65. Yi C, Johansson D, Greberg J (2018) Effects of in-situ stresses on the fracturing of rock by blasting. Comput Geotech. https://doi.org/10.1016/j.compgeo.2017.12.004

    Article  Google Scholar 

  66. Yin P-F, Yang S-Q (2019) Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression. J Geol Soc India 93:235–246. https://doi.org/10.1007/s12594-019-1158-0

    Article  Google Scholar 

  67. Yilmaz O, Unlu T (2013) Three dimensional numerical rock damage analysis under blasting load. Tunn Undergr Sp Technol 38:266–278. https://doi.org/10.1016/j.tust.2013.07.007

    Article  Google Scholar 

  68. Yuan W, Su X, Wang W, Wen L, Chang J (2019) Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2019.02.004

    Article  Google Scholar 

  69. Zhang AB, Wang BL (2013) An opportunistic analysis of the interface crack based on the modified interface dislocation method. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2012.08.024

    Article  Google Scholar 

  70. Zhang Z, Gao W, Li K, Li B (2020) Numerical simulation of rock mass blasting using particle flow code and particle expansion loading algorithm. Simul Model Pract Theory 104:102119. https://doi.org/10.1016/J.SIMPAT.2020.102119

    Article  Google Scholar 

  71. Zhao H, Zhang L, Wu Z, Liu A (2022) Fracture mechanisms of intact rock-like materials under compression. Comput Geotech 148:104845. https://doi.org/10.1016/j.compgeo.2022.104845

    Article  Google Scholar 

  72. Zhao MH, Dang HY, Fan CY, Chen ZT (2017) Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 1: theoretical solution. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2017.04.016

    Article  Google Scholar 

  73. Zhao Y, Zhang L, Wang W, Pu C, Wan W, Tang J (2016) Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression. Rock Mech Rock Eng 49:2665–2687. https://doi.org/10.1007/s00603-016-0932-1

    Article  ADS  Google Scholar 

  74. Zhou L, Zhu Z, Qiu H, Zhang X, Lang L (2018) Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens. Int J Rock Mech Min Sci 112:25–34. https://doi.org/10.1016/j.ijrmms.2018.10.011

    Article  Google Scholar 

  75. Zhou S, Zhuang X, Zhu H, Rabczuk T (2018) Phase field modelling of crack propagation, branching and coalescence in rocks. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2018.04.011

    Article  Google Scholar 

  76. Zhou Z, Lu J, Cai X (2020) Static and dynamic tensile behavior of rock-concrete bi-material disc with different interface inclinations. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119424

    Article  Google Scholar 

  77. Zhou Z, Lu J, Cai X, Rui Y, Tan L (2022) Water saturation effects on mechanical performances and failure characteristics of rock-concrete disc with different interface dip angles. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126684

    Article  Google Scholar 

  78. Zhu J, Li Y, Peng Q, Deng X, Gao M, Zhang J (2021) Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening. Tunn Undergr Sp Technol. https://doi.org/10.1016/j.tust.2020.103648

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 42272321, 42162027), National Natural Science Foundation of China-Youth Found (Grant No.41902301), and Project of Decommissioning of Nuclear Facilities and Radioactive Waste Management. Sincere thanks are extended to Associate Professor Qinghua Lei from the Department of Earth Sciences at the Uppsala University, SWE, for his valuable theory assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huandui Liu.

Ethics declarations

Conflict of interest

The authors declare no known conflicts of interest concerning the publication of this technical note.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liu, H., Zhang, J. et al. Understanding the effect of differential stress and fracture geometry on blast-induced damage in crystalline rocks: a numerical approach. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00722-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00722-1

Keywords

Navigation